Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Related tags

Deep LearningSPR
Overview

Continual Learning on Noisy Data Streams via Self-Purified Replay

This repository contains the official PyTorch implementation for our ICCV2021 paper.

  • Chris Dongjoo Kim*, Jinseo Jeong*, Sangwoo Moon, Gunhee Kim. Continual Learning on Noisy Data Streams via Self-Purified Replay. In ICCV, 2021 (* equal contribution).

[Paper Link][Slides][Poster]

System Dependencies

  • Python >= 3.6.1
  • CUDA >= 9.0 supported GPU

Installation

Using virtual env is recommended.

$ conda create --name SPR python=3.6

Install pytorch==1.7.0 and torchvision==0.8.1. Then, install the rest of the requirements.

$ pip install -r requirements.txt

Data and Log directory set-up

create checkpoints and data directories. We recommend symbolic links as below.

$ mkdir data
$ ln -s [MNIST Data Path] data/mnist
$ ln -s [CIFAR10 Data Path] data/cifar10
$ ln -s [CIFAR100 Data Path] data/cifar100
$ ln -s [Webvision Data Path] data/webvision

$ ln -s [log directory path] checkpoints

Run

Specify parameters in config yaml, episodes yaml files.

python main.py --log-dir [log directory path] --c [config file path] --e [episode file path] --override "|" --random_seed [seed]

# e.g. to run mnist symmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/mnist_spr.yaml --e episodes/mnist-split_epc1_a.yaml --override "corruption_percent=0.4";

# e.g. to run cifar10 asymmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/cifar10_spr.yaml --e episodes/cifar10-split_epc1_asym_a.yaml --override "asymmetric_nosie=False|corruption_percent=0.4";

# e.g. to run cifar100 superclass symmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/cifar100_spr.yaml --e episodes/cifar100sup-split_epc1_a.yaml --override "superclass_nosie=True|corruption_percent=0.4";

Expert Parallel Training

If you use slurm environment, training expert models in advance is possible.

# e.g. to run mnist symmetric noise 40% experiment,
python meta-main.py --log-dir [log directory path] -c configs/mnist_spr.yaml -e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4" --njobs 10 --jobs_per_gpu 3

# also, you can only train experts for later use by adding an --expert_train_only option.
python meta-main.py --log-dir [log directory path] -c configs/mnist_spr.yaml -e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4" --ngpu 10 --jobs_per_gpu 3 --expert_train_only

## to use the trained experts, set the same [log directory path] and [seed].
python main.py --log-dir [log directory path] --c configs/mnist_spr.yaml --e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4";

Citation

The code and dataset are free to use for academic purposes only. If you use any of the material in this repository as part of your work, we ask you to cite:

@inproceedings{kim-ICCV-2021,
    author    = {Chris Dongjoo Kim and Jinseo Jeong and Sangwoo Moon and Gunhee Kim},
    title     = "{Continual Learning on Noisy Data Streams via Self-Purified Replay}"
    booktitle = {ICCV},
    year      = 2021
}

Last edit: Oct 12, 2021

Owner
Jinseo Jeong
graduate student @ vision & learning lab, Seoul National Univ.
Jinseo Jeong
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
gitγ€ŠInvestigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022