An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Related tags

Deep LearningSFA
Overview

Sequence Feature Alignment (SFA)

By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao

This repository is an official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers, which is accepted to ACM MultiMedia 2021.

Introduction

TL; DR. We develop a domain adaptive object detection method SFA that is specialized for adaptive detection transformers. It contains a domain query-based feature alignment model and a token-wise feature alignment module for global and local feature alignment respectively, and a bipartite matching consistency loss for improving robustness.

SFA

Abstract. Detection transformers have recently shown promising object detection results and attracted increasing attention. However, how to develop effective domain adaptation techniques to improve its cross-domain performance remains unexplored and unclear. In this paper, we delve into this topic and empirically find that direct feature distribution alignment on the CNN backbone only brings limited improvements, as it does not guarantee domain-invariant sequence features in the transformer for prediction. To address this issue, we propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers. Technically, SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module. In DQFA, a novel domain query is used to aggregate and align global context from the token sequence of both domains. DQFA reduces the domain discrepancy in global feature representations and object relations when deploying in the transformer encoder and decoder, respectively. Meanwhile, TDA aligns token features in the sequence from both domains, which reduces the domain gaps in local and instance-level feature representations in the transformer encoder and decoder, respectively. Besides, a novel bipartite matching consistency loss is proposed to enhance the feature discriminability for robust object detection. Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods.

Main Results

The experimental results and model weights for Cityscapes to Foggy Cityscapes are shown below.

Model mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
SFA-DefDETR 21.5 41.1 20.0 3.9 20.9 43.0 Google Drive
SFA-DefDETR-BoxRefine 23.9 42.6 22.5 3.8 21.6 46.7 Google Drive
SFA-DefDETR-TwoStage 24.1 42.5 22.8 3.8 22.0 48.1 Google Drive

Note:

  1. All models of SFA are trained with total batch size of 4.
  2. "DefDETR" means Deformable DETR (with R50 backbone).
  3. "BoxRefine" means Deformable DETR with iterative box refinement.
  4. "TwoStage" indicates the two-stage Deformable DETR variant.
  5. The original implementation is based on our internal codebase. There are slight differences in the released code are slight differences. For example, we only use the middle features output by the first encoder and decoder layers for hierarchical feature alignment, to reduce computational costs during training.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n sfa python=3.7 pip

    Then, activate the environment:

    conda activate sfa
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements/requirements.txt
  • Logging using wandb (optional)

    pip install -r requirements/optional.txt

Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Usage

Dataset preparation

We use the preparation of Cityscapes to Foggy Cityscapes adaptation as demonstration. Other domain adaptation benchmarks can be prepared in analog. Cityscapes and Foggy Cityscapes datasets can be downloaded from here. The annotations in COCO format can be obtained from here. Afterward, please organize the datasets and annotations as following:

[coco_path]
└─ cityscapes
   └─ leftImg8bit
      └─ train
      └─ val
└─ foggy_cityscapes
   └─ leftImg8bit_foggy
      └─ train
      └─ val
└─ CocoFormatAnnos
   └─ cityscapes_train_cocostyle.json
   └─ cityscapes_foggy_train_cocostyle.json
   └─ cityscapes_foggy_val_cocostyle.json

Training

As an example, we provide commands for training our SFA on a single node with 4 GPUs for weather adaptation.

Training SFA-DeformableDETR

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr.sh --wandb

Training SFA-DeformableDETR-BoxRefine

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr_plus_iterative_bbox_refinement.sh --wandb

Training SFA-DeformableDETR-TwoStage

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage.sh --wandb

Training Source-only DeformableDETR

Please refer to the source branch.

Evaluation

You can get the config file and pretrained model of SFA (the link is in "Main Results" session), then run following command to evaluate it on Foggy Cityscapes validation set:

<path to config file> --resume <path to pre-trained model> --eval

You can also run distributed evaluation by using ./tools/run_dist_launch.sh or ./tools/run_dist_slurm.sh.

Acknowledgement

This project is based on DETR and Deformable DETR. Thanks for their wonderful works. See LICENSE for more details.

Citing SFA

If you find SFA useful in your research, please consider citing:

@inproceedings{wang2021exploring ,
  title={Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers},
  author={Wen, Wang and Yang, Cao and Jing, Zhang and Fengxiang, He and Zheng-Jun, Zha and Yonggang, Wen and Dacheng, Tao},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}
Owner
WangWen
WangWen
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022