A robust pointcloud registration pipeline based on correlation.

Related tags

Deep Learningphaser
Overview

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration

Ubuntu 18.04+ROS Melodic: Build Status


Overview

Pointcloud registration using correspondences is inefficient and prone to errors in the many steps of correspondence extraction, description, and matching. Similarly, the most widespread registration methods work only locally, requiring an initial guess already close to the true solution, something unaffordable in real robotic deployments. We propose an algorithm for the registration of partially overlapping pointclouds that operates at the global level and on the raw data, i.e., no initial guess as well as no candidate matches are required. We exploit the properties of Fourier analysis to derive a novel registration pipeline based on the cross-correlation of the phases.

Packages

PHASER is composed of the following packages:

  • phaser_core: The registration core of PHASER. Contains the spherical and spatial correlation.
  • phaser_ros: This is a ROS wrapper to use the PHASER as a registration framework. Hardly used anymore.
  • phaser_common: Exposes common classes, utils and models.
  • phaser_pre: Experimental preprocessing of pointcloud data.
  • phaser_viz: Provides visualization functions.
  • phaser_test_data: Contains example data as PLYs.
  • phaser_share: Provides run and build scripts.

Installation

PHASER requires ROS and some other dependencies to be installed:

Dependencies

  # Some standard requirements
  sudo apt-get install -y doxygen autotools-dev \
     dh-autoreconf libboost-all-dev python-setuptools git g++ cppcheck \
     libgtest-dev python-git pylint \
     python-termcolor liblog4cplus-dev cimg-dev python-wstool \
     python-catkin-tools \

   # Ubuntu 18.04 / ROS Melodic.
   sudo apt-get install -y clang-format-6.0 ros-melodic-pcl-conversions \
     libpcl-dev libnlopt-dev \

Important: Currently, PHASER also requires nvcc for compilation as most-recent experiments deal with performing the FFTs on the GPU.

For the remaining package dependencies, run within the caktin workspace

  wstool init
  wstool merge phaser/dependencies.rosinstall
  wstool update

Building the project:

  catkin build phaser_ros

Optionally one can build an run all unit tests using:

  ./phaser_share/run_build_tests

However, this might take some minutes to finish.

Example

The package phaser_core provides a simple test driver to run PHASER using two pointclouds stored as .ply files. Additionally, run script for the test driver is provided in the phaser_share directory.

The initial alignment of the two pointclouds is as follows: PHASER Input Example

By running

./phaser_share/run_phaser_core_driver

the registered pointcloud is written to disk as registered.ply. You might need to adapt the source and target pointcloud paths. Furthermore, other pointcloud examples can be found in the phaser_test_data/test_clouds/os0/ directory.

In this particular case, the registration is configured to be very fine. Thus, it will take a few seconds to finish: PHASER Registered Example

Development Guidelines

Reference

Our paper is available at
Bernreiter, Lukas, Lionel Ott, Juan Nieto, Roland Siegwart, and Cesar Cadena. "PHASER: A Robust and Correspondence-Free Global Pointcloud Registration." IEEE Robotics and Automation Letters 6, no. 2 (2021): 855-862. [Link] [ArXiv].

BibTex:

@article{bernreiter2021phaser,
  title={PHASER: A Robust and Correspondence-Free Global Pointcloud Registration},
  author={Bernreiter, Lukas and Ott, Lionel and Nieto, Juan and Siegwart, Roland and Cadena, Cesar},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={855--862},
  year={2021},
  publisher={IEEE}
}
Owner
ETHZ ASL
ETHZ ASL
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022