TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

Overview

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++ is a novel multi-object TSDF formulation that can encode multiple object surfaces at each voxel. In a multiple dynamic object tracking and reconstruction scenario, a TSDF++ map representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. At the same time, the representation allows maintaining a single volume for the entire scene and all the objects therein, thus solving the fundamental challenge of scalability with respect to the number of objects in the scene and removing the need for an explicit occlusion handling strategy.

Citing

When using TSDF++ in your research, please cite the following publication:

Margarita Grinvald, Federico Tombari, Roland Siegwart, and Juan Nieto, TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction, in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021. [Paper] [Video]

@article{grinvald2021tsdf,
  author={M. {Grinvald} and F. {Tombari} and R. {Siegwart} and J. {Nieto}},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  title={{TSDF++}: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction},
  year={2021},
}

Installation

The installation has been tested on Ubuntu 16.04 and Ubutnu 20.04.

Requirements

Install dependencies

Install ROS following the instructions at the ROS installation page. The full install (ros-kinetic-desktop-full, ros-melodic-desktop-full) are recommended.

Make sure to source your ROS setup.bash script by following the instructions on the ROS installation page.

Installation on Ubuntu

In your terminal, define the installed ROS version and name of the catkin workspace to use:

export ROS_VERSION=kinetic # (Ubuntu 16.04: kinetic, Ubuntu 18.04: melodic)
export CATKIN_WS=~/catkin_ws

If you don't have a catkin workspace yet, create a new one:

mkdir -p $CATKIN_WS/src && cd $CATKIN_WS
catkin init
catkin config --extend /opt/ros/$ROS_VERSION --merge-devel 
catkin config --cmake-args -DCMAKE_CXX_STANDARD=14 -DCMAKE_BUILD_TYPE=Release
wstool init src

Clone the tsdf-plusplus repository over HTTPS (no Github account required) and automatically fetch dependencies:

cd $CATKIN_WS/src
git clone https://github.com/ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_https.rosinstall
wstool update

Alternatively, clone over SSH (Github account required):

cd $CATKIN_WS/src
git clone [email protected]:ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_ssh.rosinstall
wstool update

Build and source the TSDF++ packages:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation
source ../devel/setup.bash # (bash shell: ../devel/setup.bash,  zsh shell: ../devel/setup.zsh)

Troubleshooting

Compilation freeze

By default catkin build on a computer with N CPU cores will run N make jobs simultaneously. If compilation seems to hang forever, it might be running low on RAM. Try limiting the number of maximum parallel build jobs through the -jN flag to a value way lower than your CPU count, i.e.

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j4

If it still freezes at compilation time, you can go as far as limiting the maximum number of parallel build jobs and max load to 1 through the -lN flag:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j1 -l1

License

The code is available under the MIT license.

Owner
ETHZ ASL
ETHZ ASL
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022