SGoLAM - Simultaneous Goal Localization and Mapping

Related tags

Deep LearningSGoLAM
Overview

SGoLAM - Simultaneous Goal Localization and Mapping

PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and Mapping [Talk Video]. Our method does not employ any training of neural networks, but shows competent performance in the MultiON benchmark. In fact, we outperform the winning entry by a large margin in terms of success rate.

alt text

We encourage future participants of the MultiON challenge to use our code as a starting point for implementing more sophisticated navigation agents. If you have any questions on running SGoLAM please leave an issue.

Notes on Installation

To run experiments locally/on a server, follow the 'bag of tricks' below:

  1. Please abide by the steps provided in the original MultiON repository. (Don't bother looking at other repositories!)
  2. Along the installation process, numerous dependency errors will occur. Don't look for other workarounds and just humbly install what is missing.
  3. For installing Pytorch and other CUDA dependencies, it seems like the following command works: conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch.
  4. By the way, habitat-lab installation is much easier than habitat-sim. You don't necessarily need to follow the instructions provided in the MultiON repository for habitat-lab. Just go directly to the habitat-lab repository and install habitat-lab. However, for habitat-sim, you must follow MultiON's directions; or a pile of bugs will occur.
  5. One python evaluate.py is run, a horrifying pile of dependency errors will occur. Now we will go over some of the prominent ones.
  6. To solve AttributeError: module 'attr' has no attribute 's', run pip uninstall attr and then run pip install attrs.
  7. To solve ModuleNotFoundError: No module named 'imageio', run pip install imageio-ffmpeg.
  8. To solve ImportError: ModuleNotFoundError: No module named 'magnum', run pip install build/deps/magnum-bindings/src/python.
  9. The last and most important 'trick' is to google errors. The Habitat team seems to be doing a great job answering GitHub issues. Probably someone has already ran into the error you are facing.
  10. If additional 'tricks' are found, feel free to share by appending to the list starting from here. `

Docker Sanity Check (Last Modified: 2021.03.26:20:11)

A number of commands to take for docker sanity check.

Login

First, login to the dockerhub repository. As our accounts don't support private repositories with multiple collaborators, we need to share a single ID. For the time being let's use my ID. Type the following command

docker login

Now one will be prompted a user ID and PW. Please type ID: esteshills PW: 82magnolia.

Pull Image

I have already built an image ready for preliminary submission. It can be easily pulled using the following command.

docker pull esteshills/multion_test:tagname

Run Evaluation

To make an evaluation for standard submission, run the following command. Make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running.

cd scripts/
./test_docker.sh

Playing around with Docker Images

One may want to further examine the docker image. Run the following command.

cd scripts/
./test_docker_bash.sh

Again, make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running. Note that the commands provided in the MultiON repository can be run inside the container. For example:

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --agent-type no-map --run-type eval

In order to run other baselines, i) modify the checkpoint path in the .yaml file, ii) download the model checkpoint, iii) change the agent type.

Preventing Hassles with Docker (Last Modified: 2021.04.08:09:07)

Now we probably don't need to develop with docker. Just plug in your favorite agent following the instructions provided below.

Plug-and-Play New Agents

One can easily test new agents by providing the file name containing agent implementation. To implement a new agent, please refer to agents/example.py. To test a new agent and get evaluation results, run the following command (this is an example for the no_map baseline).

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill

In addition, one can change the number of episodes to be tested. However, this feature is only available in the annotated branch, as it requires a slight modification in the core habitat repository. Run the following command to change the number of episodes. While it will not produce any bugs in the main branch as well, the argument will have no effect.

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill --num_episodes 100

Plug-and-Play New Agents from Local Host

Running Agents

Suppose one has some implementations of navigation agents that are not yet pushed to agents/. These could be tested on-the-fly using a handy script provided in scripts. First, put all the agent implementations inside extern_agents/, similar to implementations in agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent.sh new_agent

Make sure the agents are located in the extern_agents/ folder. This way, there is no need to directly hassle with docker; docker is merely used as a black box for running evaluations.

Now suppose one needs to debug the agent in the docker environment. This could be done by running the following script; it will open bash with extern_agents/ mounted.

./scripts/test_docker_agent_bash.sh

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) provided.

./scripts/extern_eval.sh new_agent

Playing Agent Episodes with Video

Agent trajectories per episode can be visualized with the scripts in scripts/. Again, put all the agent implementations inside extern_agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent_video.sh new_agent 

Make sure the mount paths are set correctly inside ./scripts/test_docker_agent_video.sh.

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) and video save directory (in this case ./test_dir) provided.

./scripts/extern_eval_video.sh new_agent ./test_dir

Caveats

The original implementations assume two GPUs to be given. Therefore bugs may occur if only a single GPU is present. In this case do not run the docker scripts directly, as it will return errors. Instead, connect to a docker container with bash and first modify the baseline .yaml configuration so that it only uses a single GPU. Then, run the *_eval*.sh scripts. I am planning on remedying this issue with a similar plug-and-play fashion, but for the time being, stick to this procedure.

Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022