Official Repository of NeurIPS2021 paper: PTR

Related tags

Deep LearningPTR
Overview

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning

Dataset Overview

Figure 1. Dataset Overview.

Introduction

A critical aspect of human visual perception is the ability to parse visual scenes into individual objects and further into object parts, forming part-whole hierarchies. Such composite structures could induce a rich set of semantic concepts and relations, thus playing an important role in the interpretation and organization of visual signals as well as for the generalization of visual perception and reasoning. However, existing visual reasoning benchmarks mostly focus on objects rather than parts. Visual reasoning based on the full part-whole hierarchy is much more challenging than object-centric reasoning due to finer-grained concepts, richer geometry relations, and more complex physics. Therefore, to better serve for part-based conceptual, relational and physical reasoning, we introduce a new large-scale diagnostic visual reasoning dataset named PTR. PTR contains around 70k RGBD synthetic images with ground truth object and part level annotations regarding semantic instance segmentation, color attributes, spatial and geometric relationships, and certain physical properties such as stability. These images are paired with 700k machine-generated questions covering various types of reasoning types, making them a good testbed for visual reasoning models. We examine several state-of-the-art visual reasoning models on this dataset and observe that they still make many surprising mistakes in situations where humans can easily infer the correct answer. We believe this dataset will open up new opportunities for part-based reasoning.

PTR is accepted by NeurIPS 2021.

Authors: Yining Hong, Li Yi, Joshua B Tenenbaum, Antonio Torralba and Chuang Gan from UCLA, MIT, IBM, Stanford and Tsinghua.

Arxiv Version: https://arxiv.org/abs/2112.05136

Project Page: http://ptr.csail.mit.edu/

Download

Data and evaluation server can be found here

TODOs

baseline models will be available soon!

About the Data

The data includes train/val/test images / questions / scene annotations / depths. Note that due to data cleaning process, the indices of the images are not necessarily consecutive.

The scene annotation is a json file that contains the following keys:

    cam_location        #location of the camera
    cam_rotation        #rotation of the camera
    directions          #Based on the camera, the vectors of the directions
    image_filename      #the filename of the image
    image_index         #the index of the image
    objects             #the objects in the scene, which contains a list of objects
        3d_coords       #the location of the object
        category        #the object category
        line_geo        #a dictionary containing (part, line unit normal vector) pairs. See the [unit normal vector](https://sites.math.washington.edu/~king/coursedir/m445w04/notes/vector/normals-plane.html) of a line. If the vector is not a unit vector, then the part cannot be considered a line.
        plane_geo       #a dictionary containing (part, plane unit normal vector) pairs. See the [unit normal vector](https://sites.math.washington.edu/~king/coursedir/m445w04/notes/vector/normals-plane.html) of a plane. If the vector is not a unit vector, then the part cannot be considered a line.
        obj_mask        #the mask of the object
        part_color      #a dictionary containing the colors of the parts
        part_count      #a dictionary containing the number of the parts
        part_mask       #a dictionary containing the masks of the parts
        partnet_id      #the id of the original partnet object in the PartNet dataset
        pixel_coords    #the pixel of the object
    relationships       #according to the directions, the spatial relationships of the objects
    projection_matrix   #the projection matrix of the camera to reconstruct 3D scene using depths
    physics(optional)   #if physics in the keys and the key is True, this is a physical scene.

The question file is a json file which contains a list of questions. Each question has the following keys:

    image_filename      #the image file that the question asks about
    image_index         #the image index that the question asks about
    program             #the original program used to generate the question
    program_nsclseq     #rearranged program as described in the paper
    question            #the question text
    answer              #the answer text
    type1               #the five questions types
    type2               #the 14 subtypes described in Table 2 in the paper

Data Generation Engine

The images and scene annotations can be generated via invoking data_generation/image_generation/render_images_partnet.py

blender --background --python render_images_partnet.py -- [args]

To generate physical scenes, invoke data_generation/image_generation/render_images_physics.py

blender --background --python render_images_physics.py -- [args]

For more instructions on image generation, please go to this directory and see the README file

To generate questions and answers based on the images, please go to this directory, and run

python generate_questions.py --input_scene_dir $INPUT_SCENE_DIR --output_dir $OUTPUT_QUESTION_DIR --output_questions_file $OUTPUT_FILE

The data generation engine is based partly on the CLEVR generation engine.

Errata

We have manually examined the images, annotations and questions twice. However, provided that there are annotation errors of the PartNet dataset we used, there could still be some errors in the scene annotations. If you find any errors that make the questions unanswerable, please contact [email protected].

Citations

@inproceedings{hong2021ptr,
author = {Hong, Yining and Yi, Li and Tenenbaum, Joshua B and Torralba, Antonio and Gan, Chuang},
title = {PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning},
booktitle = {Advances In Neural Information Processing Systems},
year = {2021}
}
Owner
Yining Hong
https://evelinehong.github.io
Yining Hong
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022