code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Overview

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

This repository contains PyTorch evaluation code, training code and pretrained models for AttentiveNAS.

For details see AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling by Dilin Wang, Meng Li, Chengyue Gong and Vikas Chandra.

If you find this project useful in your research, please consider cite:

@article{wang2020attentivenas,
  title={AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling},
  author={Wang, Dilin and Li, Meng and Gong, Chengyue and Chandra, Vikas},
  journal={arXiv preprint arXiv:2011.09011},
  year={2020}
}

Pretrained models and data

Download our pretrained AttentiveNAS models and a (sub-network, FLOPs) lookup table from Google Drive and put them under folder ./attentive_nas_data

Evaluation

To evaluate our pre-trained AttentiveNAS models, from AttentiveNAS-A0 to A6, on ImageNet val with a single GPU, run:

python test_attentive_nas.py --config-file ./configs/eval_attentive_nas_models.yml --model a[0-6]

Expected results:

Name MFLOPs Top-1 (%)
AttentiveNAS-A0 203 77.3
AttentiveNAS-A1 279 78.4
AttentiveNAS-A2 317 78.8
AttentiveNAS-A3 357 79.1
AttentiveNAS-A4 444 79.8
AttentiveNAS-A5 491 80.1
AttentiveNAS-A6 709 80.7

Training

To train our AttentiveNAS models from scratch, run

python train_supernet.py --config-file configs/train_attentive_nas_models.yml --machine-rank ${machine_rank} --num-machines ${num_machines} --dist-url ${dist_url}

We adopt SGD training on 64 GPUs. The mini-batch size is 32 per GPU; all training hyper-parameters are specified in train_attentive_nas_models.yml.

License

The majority of AttentiveNAS is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Once For All is licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Owner
Facebook Research
Facebook Research
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
Rhasspy 673 Dec 28, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022