Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

Related tags

Deep LearningCodeGen
Overview

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and model evaluation.

We provide reference implementations of the following papers:

We also provide pre-trained models for language modeling, translation and deobfuscation.

Dependencies

Run install_env.sh. We use black code formatter.

Data

Source code processors

This repository contains programming languages processors for C++, Java and Python. These processors include:

  • tokenization and detokenization
  • obfuscation
  • function extractions

These processors are based on TreeSitter parsers. As these parsers are available in more than 30 programming languages, one can easily create a new programming language processor.

Example of code tokenization:

from codegen_sources.preprocessing.lang_processors.java_processor import JavaProcessor

java_code = r"""class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, World!"); 
    }
}"""
java_processor = JavaProcessor(root_folder="<YOUR_TREESITER_FOLDER>")
tokenized_java_code = java_processor.tokenize_code(java_code)
print(tokenized_java_code)

BPE

This repository provides wrappers for fast BPE and Roberta BPE at file level.

Dataset Preprocessing

This repository contains a pipeline to create programming languages datasets. Now it supports four datasets modes:

  • Monolingual (ex: Java source code)
  • Monolingual Functions (ex: Java functions)
  • Monolingual Obfuscated (ex: Obfuscated Java source code. [Details here])
  • Monolingual Obfuscated Functions (ex: Obfuscated Java functions)

First, download C++ / Java / Python source code from Google BigQuery. To run our preprocessing pipeline, you need to donwload the raw source code on your machine in a JSON format. A sample of it is given here.

The pipeline does the following:

  • Source code extraction from json (.json.gz) and tokenization (.tok)
  • Train BPE codes and vocab
  • Apply BPE (.bpe)
  • Binarization (.pth)
  • Symlink folder with appropriate file names for .pth (XLM-syml). To be given as data_path argument for training.

To run the pipeline :

python -m codegen_sources.preprocessing.preprocess \
<DATA_PATH> \                            # folder containing json.gz
--langs java cpp python  \               # languages to process
--mode monolingual_functions \           # dataset mode
--bpe_mode=fast_bpe \                    # BPE mode. by default it is fast_BPE. can be roberta_bpe
--local=True \                           # Run on your local machine if True. If False run on a cluster (requires submitit setup)
--train_splits=1                         # Number of trainings splits

If you give several languages, the BPE codes and vocab will be learned commonly on these languages , so that you will have a common vocabulary to train one model for several languages. If you do not want that, launch the pipeline on every language separatly. These tests test the pipeline on different modes. It will give you an overview of the possible options.

Also, we provide the BPE codes and vocabulary here. These are the codes and vocabulary used for TransCoder and DOBF. They were learned on concatenated C++, Java, and Python data. If you want to use them instead of learning new ones, give the corresponding paths as fastbpe_code_path and fastbpe_vocab_path arguments.

In TransCoder and DOBF readmes, we provide the commands to preprocess the respective datasets.

Model

Overview

In this repository, we provide code to train transformer-based models (code based on XLM repository). The available training tasks are the following:

  • Masked Language Model (MLM)
  • Causal Language Model (CLM)
  • Supervised Machine translation (MT)
  • Classification
  • Deobfuscation = DOBF
  • Unsupervised Machine translation = TransCoder (Denoising auto encoding AE + Back Translation BT)

We evaluate our models with metrics adapted to each task (e.g. computation accuracy and BLEU score for TransCoder, subtoken score for Deobfuscation).

Also, we provide wrappers to fine-tune and evaluate our models on CodeXGLUE benchmark.

Download models

You can donwload the following models :

Re train specific models

To have details on how to retrain specific models, please refer to the README specific to each model.

References

TransCoder model (NeurIPS 2020)

[1] B. Roziere*, M.A. Lachaux*, L. Chanussot, G. Lample Unsupervised Translation of Programming Languages.

@article{roziere2020unsupervised,
  title={Unsupervised translation of programming languages},
  author={Roziere, Baptiste and Lachaux, Marie-Anne and Chanussot, Lowik and Lample, Guillaume},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

DOBF

[2] B. Roziere*, M.A. Lachaux*, M. Szafraniec , G. Lample DOBF: A Deobfuscation Pre-Training Objective for Programming Languages.

@article{roziere2021dobf,
  title={DOBF: A Deobfuscation Pre-Training Objective for Programming Languages},
  author={Roziere, Baptiste and Lachaux, Marie-Anne and Szafraniec, Marc and Lample, Guillaume},
  journal={arXiv preprint arXiv:2102.07492},
  year={2021}
}

* Equal Contribution

License

CodeGen is under the license detailed in the Creative Commons Attribution-NonCommercial 4.0 International license. See LICENSE for more details.

Owner
Facebook Research
Facebook Research
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022