Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

Related tags

Deep Learningmeshtalk
Overview

meshtalk

This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite

@inproceedings{richard2021meshtalk,
    author    = {Richard, Alexander and Zollh\"ofer, Michael and Wen, Yandong and de la Torre, Fernando and Sheikh, Yaser},
    title     = {MeshTalk: 3D Face Animation From Speech Using Cross-Modality Disentanglement},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {1173-1182}
}

Supplemental Material

Watch the video

Running MeshTalk

Dependencies

ffmpeg
numpy
torch         (tested with v1.10.0)
pytorch3d     (tested with v0.4.0)
torchaudio    (tested with v0.10.0)

Animating a Face Mesh from Audio

Download the pretrained models and unzip them. Make sure your python path contains the root directory (export PYTHONPATH=<your_meshtalk_root_directory>).

Then, run

python animate_face.py --model_dir <your_pretrained_model_dir> --audio_file <your_speech_snippet.wav> --output <your_output_file.mp4>

See a description of command line arguments via python animate_face.py --help. We provide a neutral face template mesh in assets/face_template.obj. Note that the rendered results look slightly different than in the paper and supplemental video because we use a differnt (open source) rendering engine in this repository.

Training your own MeshTalk version

We are in the process of releasing high-quality 3D face captures of 16 subjects (a subset of the dataset used in this paper). We will link to the dataset here once it is available.

License

The code and dataset are released under CC-NC 4.0 International license.

Comments
  • Can I change the OBJ model?

    Can I change the OBJ model?

    If I want to change an OBJ face, what are the requirements? Or is there a template for the face you use? Then you can create many faces through the template. I read other issues and learned that not all OBJ can be used. Does the number of vertices of the mesh need to be the same? Does the face size need to be the same?

    This is a cool project.

    opened by ALIENMINT 6
  • asset files creation

    asset files creation

    Hi, I ran the custom audio expressions on your neutral mesh object and it ran well. I wanted to run the audio on my own custom (model)object files. I have created the object files for my person model. For this how do I generate the asset files - face_mean.npy, face_std forehead_mask and neck mask files? Are these files generated for the object file, or am i supposed to resize the object file to the 6172 dimension in order to use with the existing asset files? Thank you for your help in advance.

    opened by programmeddeath1 6
  • new obj

    new obj

    i have a new obj file with 6172 points from the default obj file, Q1:what is the meaning of the file face_mean and face_std and the two txt with smoothing ? Is the middle face and the hyperbole face ? Q2: how to make the face_mean and face_std and the smooth txt file?

    opened by luoww1992 5
  • Training parameters

    Training parameters

    Hello,

    I am trying to train MeshTalk on the VOCA dataset, however, the loss value explodes if I use a learning rate 1e-4 or higher, and keeps oscillating in the range of 0.2 if I use a lower learning rate (this does not lead to realistic results). I was wondering what training parameters were used in the paper?

    I am using the following parameters: no. of frames, T = 128 optimizer SGD with lr=9e-5 (at the moment), momentum=0.9, nesterov=True M_upper = 5 and M_lower = 5 batch_size = 16

    Thanks for any help!

    opened by UttaranB127 5
  • mesh faces missing for multiface

    mesh faces missing for multiface

    The mesh graph (.obj) multiface provided has almost 2000 faces less than the mesh by meshtalk (.obj). I wonder how to cope with it. Should I do some remeshing work to connect the isolated vertices together?

    opened by songtoy 4
  • How to use diffrent obj model?

    How to use diffrent obj model?

    Incredible work!Thanks! I have a question on using diffrent obj model. I tried to use obj model file created by deca, but meet a error:

    (meshtalk) [email protected]:/data/cx/GANs/meshtalk$ python animate_face.py --model_dir weights/pretrained_models --audio_file test.wav --output outputs --face_template myasset/mzd.obj /home/ubuntu/.local/lib/python3.8/site-packages/torchaudio/backend/utils.py:53: UserWarning: "sox" backend is being deprecated. The default backend will be changed to "sox_io" backend in 0.8.0 and "sox" backend will be removed in 0.9.0. Please migrate to "sox_io" backend. Please refer to https://github.com/pytorch/audio/issues/903 for the detail. warnings.warn( load assets... load models... Loaded: weights/pretrained_models/vertex_unet.pkl Loaded: weights/pretrained_models/context_model.pkl Loaded: weights/pretrained_models/encoder.pkl animate face mesh... /home/ubuntu/.local/lib/python3.8/site-packages/torch/functional.py:515: UserWarning: stft will require the return_complex parameter be explicitly specified in a future PyTorch release. Use return_complex=False to preserve the current behavior or return_complex=True to return a complex output. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:653.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore /home/ubuntu/.local/lib/python3.8/site-packages/torch/functional.py:515: UserWarning: The function torch.rfft is deprecated and will be removed in a future PyTorch release. Use the new torch.fft module functions, instead, by importing torch.fft and calling torch.fft.fft or torch.fft.rfft. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:590.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore Traceback (most recent call last): File "animate_face.py", line 93, in geom = template_verts.cuda().view(1, 1, 6172, 3).expand(-1, T, -1, -1).contiguous() RuntimeError: shape '[1, 1, 6172, 3]' is invalid for input of size 15069

    What should I do if I want to animate different obj files?

    opened by AdamMayor2018 4
  • Different topology from multiface dataset?

    Different topology from multiface dataset?

    I find that the number of vertices from your given template object is different from what I downloaded from multiface dataset. Especially the details of the mouth are quite different, would you please share more information about the experiments?

    opened by chenerg 3
  • Context model - how to train?

    Context model - how to train?

    Hello,

    How to train the autoregressive model for inference? In the forward function, what would be the first expression_one_hot tensor? I understand subsequent inputs would be the labels output of previous timestep.

    `def forward(self, expression_one_hot: th.Tensor, audio_code: th.Tensor):

       x = self.embedding(expression_one_hot)
    
        for layer in self.context_layers:
            x = layer(x, audio_code)
            x = F.leaky_relu(x, 0.2)
    
        logits = self.logits(x)
        logprobs = F.log_softmax(logits, dim=-1)
        probs = F.softmax(logprobs, dim=-1)
        labels = th.argmax(logprobs, dim=-1)
    
        return {"logprobs": logprobs, "probs": probs, "labels": labels}` 
    

    Thanks

    opened by karthik-mohankumar 3
  • Do you have any uv texture mapping files?

    Do you have any uv texture mapping files?

    Hi. I am very impressed with your wonderful research. Thank you so much for sharing the great results. I want to render a texture to the output generated by this model. Can I get a uv texture mapping file that matches the output?

    opened by shovelingpig 3
  • Audio features are different from your paper statement

    Audio features are different from your paper statement

    Hi, I found the audio preprocessing use simple transformation in your codes (load_audio & audio_chunking). But there are different from your statement in paper where the paper says"Our audio data is recorded at 16kHz. For each tracked mesh, we compute the Mel spectrogram of a 600ms audio snippet starting 500ms before and ending 100ms after the respective visual frame. We extract 80-dimensional Mel spectral features every 10ms, using 1, 024 frequency bins and a window size of 800 for the underlying Fourier transform."

    I didn't find any Mel spectral calculation in your code, why there are different? Is the current version is better than Mel spectral features?

    opened by kjhgfdsaas 3
  • Build pytorch3d 0.4.0 failed with torch1.10

    Build pytorch3d 0.4.0 failed with torch1.10

    I try to build pytorch3d 0.4.0 source with torch1.10 as same version as readme. But it always failed. The log is below:

    /home/local/gcc-5.3.0/bin/gcc -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -DWITH_CUDA -DTHRUST_IGNORE_CUB_VERSION_CHECK -I/home/Projects/github_projects/pytorch3d/pytorch3d/csrc -I/home/software_packages/cub-1.10.0 -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/TH -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/THC -I/usr/local/cuda-10.2/include -I/home/anaconda3/envs/torch1.10/include/python3.7m -c /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp -o build/temp.linux-x86_64-3.7/home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.o -std=c++14 -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE="_gcc" -DPYBIND11_STDLIB="_libstdcpp" -DPYBIND11_BUILD_ABI="_cxxabi1011" -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0
      cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
      /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp: In function ‘std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor> RasterizeMeshesNaiveCpu(const at::Tensor&, const at::Tensor&, const at::Tensor&, const at::Tensor&, std::tuple<int, int>, float, int, bool, bool, bool)’:
      /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp:294:28: error: converting to ‘std::tuple<float, int, float, float, float, float>’ from initializer list would use explicit constructor ‘constexpr std::tuple< <template-parameter-1-1> >::tuple(_UElements&& ...) [with _UElements = {const float&, int&, const float&, const float&, const float&, const float&}; <template-parameter-2-2> = void; _Elements = {float, int, float, float, float, float}]’
                     q[idx_top_k] = {
                                  ^
      error: command '/home/local/gcc-5.3.0/bin/gcc' failed with exit status 1
      Building wheel for pytorch3d (setup.py) ... error
      ERROR: Failed building wheel for pytorch3d
    

    Dose pytorch3d 0.4.0 really support torch1.10? I see the requirement is less than 1.7.1 in pytorch3d 0.4.0 url and less than 1.9.1 in pytorch3d main url

    My environment:

    • centos 7
    • gcc 5.3.0
    • cuda 10.2
    • cub 1.10
    • python 3.7 (conda environment)
    • torch1.10
    • pytorch3d 0.4.0
    opened by wikiwen 3
  • Which data was used for the pre-trained model

    Which data was used for the pre-trained model

    Hi! The paper mentions the following:

    We release a subset of 16 subjects of this dataset and our model using only these subjects as a baseline to compare against

    Since multiface was release with only 13 identities, can you please confirm what was used for the released pre-trained model? (e.g. the 13 identities in multiface? Those plus 3 other identities? Or another set of 16 identities?)

    Thank you!

    opened by luizgh 0
Releases(pretrained_models_v1.0)
Owner
Meta Research
Meta Research
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022