Training and Evaluation Code for Neural Volumes

Overview

Neural Volumes

This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of objects & scenes that can be rendered and animated from only calibrated multi-view video.

Neural Volumes

Citing Neural Volumes

If you use Neural Volumes in your research, please cite the paper:

@article{Lombardi:2019,
 author = {Stephen Lombardi and Tomas Simon and Jason Saragih and Gabriel Schwartz and Andreas Lehrmann and Yaser Sheikh},
 title = {Neural Volumes: Learning Dynamic Renderable Volumes from Images},
 journal = {ACM Trans. Graph.},
 issue_date = {July 2019},
 volume = {38},
 number = {4},
 month = jul,
 year = {2019},
 issn = {0730-0301},
 pages = {65:1--65:14},
 articleno = {65},
 numpages = {14},
 url = {http://doi.acm.org/10.1145/3306346.3323020},
 doi = {10.1145/3306346.3323020},
 acmid = {3323020},
 publisher = {ACM},
 address = {New York, NY, USA},
}

File Organization

The root directory contains several subdirectories and files:

data/ --- custom PyTorch Dataset classes for loading included data
eval/ --- utilities for evaluation
experiments/ --- location of input data and training and evaluation output
models/ --- PyTorch modules for Neural Volumes
render.py --- main evaluation script
train.py --- main training script

Requirements

  • Python (3.6+)
    • PyTorch (1.2+)
    • NumPy
    • Pillow
    • Matplotlib
  • ffmpeg (in PATH, needed to render videos)

How to Use

There are two main scripts in the root directory: train.py and render.py. The scripts take a configuration file for the experiment that defines the dataset used and the options for the model (e.g., the type of decoder that is used).

A sample set of input data is provided in the v0.1 release and can be downloaded here and extracted into the root directory of the repository. experiments/dryice1/data contains the input images and camera calibration data, and experiments/dryice1/experiment1 contains an example experiment configuration file (experiments/dryice1/experiment1/config.py).

To train the model:

python train.py experiments/dryice1/experiment1/config.py

To render a video of a trained model:

python render.py experiments/dryice1/experiment1/config.py Render

License

See the LICENSE file for details.

Comments
  • Training with our own data

    Training with our own data

    Hi,
    I have a few questions on how the data should be formatted and the data format of the provided dryice1.

    • The model expects world space coordinate in meters? i.e if my extrinsics are already in meters do I still need the world_scale=1/256. in config.py file?
    • The extrinsics are in world2cam and the rotation convention is like opencv? i.e, y-down,z-forward and x-right, assuming identity for pose.txt file?
    • how long do I need to train for about 200 frames? And in the config.py file it seems you are skipping some frames? This is ok to do for my own sequence as well?
    • in the KRT file, I see that there's 5 parameters above the RT matrix. This is the distortion correction in opencv format? But it is not used yes?
    • I did not visualize your cameras, so I am not sure how they are distributed. Is it gonna be a problem if I use 50 cameras equally distributed in a half-hemisphere and the subject is already at world origin and 3.5 meters from every cameras? My question is do I need to filter the training cameras so that the back side of subject that is not seen by input 3 cameras is excluded?
    • How do I choose the input cameras? I have a visualization of the cameras . Which camera config should I use? Is this more a question of which testing camera poses I intend to have, i.e narrower the testing cameras' range of view, the closer input training cameras can be? Config_0 is more orthogonal and Config_1 sees less of the backside.
    opened by zawlin 32
  • Some questions about coordination transformation

    Some questions about coordination transformation

    Hello, Thanks for releasing your code. I am impressed by your work. Now I hope to run your code with my our dataset. I have two questions.

    Firstly, I see the pose.txt is used in the code to put the objects in the center. If I use my own data, will the file still work?

    Secondly, I see the code set the raypos is among -1 and 1. Is it the matrix in this pose file that narrows the range to -1 to 1? My own dataset' range is different.

    Thirdly, does the code limit the scope of the template? Does it have to be between 0-255?

    Thanks a lot in advance!

    opened by maobenz 3
  • Location of the volume

    Location of the volume

    Hi there,

    I wonder whether the origin of the volume is (0,0,0)?

    I'm testing the method on a public dataset (http://people.csail.mit.edu/drdaniel/mesh_animation), and I know exactly where (0,0,0) is in the images. But the volume seems to float around the scene. This is the first preview for training process: prog_000001

    Each camera is pointing to the opposite side of the scene, so I expect the same for the volume location in images. But for some reason, they are on the same side in the images. Can you help?

    Thank you.

    opened by lochuynh1989 3
  • Any plan to release all data that presented in the paper?

    Any plan to release all data that presented in the paper?

    Hi @stephenlombardi ,

    Thanks for sharing this great work. I was wondering do you have any plan to release all the data that you used in the paper (apart from the dryice)?

    Best, Zirui

    opened by ziruiw-dev 2
  • Block-wise initialization scheme

    Block-wise initialization scheme

    Hi, is there any paper describing the used block-wise weight initialization scheme?

    https://github.com/facebookresearch/neuralvolumes/blob/8c5fad49b2b05b4b2e79917ee87299e7c1676d59/models/utils.py#L73

    opened by denkorzh 2
  • Is there a way to render a 3D file from this?

    Is there a way to render a 3D file from this?

    Hello, I was wondering if there is a way to export an .obj/,fbx file along with corresponding materials from this? If not, do you have any suggestions as to how to go about that if I were to try extend the code to incorporate that functionality?

    opened by arlorostirolla 1
  • How Can I train and render a Person Image

    How Can I train and render a Person Image

    Hi my name is Luan I am trying to render a Person Image but I am not being able to run can you create and for me a folder with the Setting setup to use a person image? Thank you.

    opened by LuanDalOrto 1
  • code for hybrid rendering (section 6.2) doesn't exist?

    code for hybrid rendering (section 6.2) doesn't exist?

    Hello,

    First of all, thank you for releasing the code for your seminal work. I really think neural volumes is one of the works that popularized differentiable rendering and inspired future works such as neural radiance fields.

    My question is whether this codebase includes the code for the hybrid rendering method outlined in section 6.2 of the paper. I'm trying to fit Neural Volumes to multi-view video of a full-body human being, similar to the 5th subfigure in Fig. 1 of the main paper, but after reading it more carefully it seems as though I would need to use hybrid rendering to be able to render the fine details of the human being.

    Could you

    1. confirm the existence of hybrid rendering in this codebase AND
    2. whether or not hybrid rendering was used to render the full-bodied human being in Fig. 1 of the main paper.

    Thank you in advance.

    opened by andrewsonga 1
  • Misaligned views in rendering

    Misaligned views in rendering

    Hi,

    I am working on MIT dataset to test the network. When I specify a camera to render, it looks fine throughout timeline. However, while rendering the rotating video, the cameras are misaligned as shown in attached screenshot. All cameras look like clustered at the center and views are spread around within the range cameras cover. Is it possible to be any error in KRT or configuration?

    Any suggestion is welcome. issue_MIT_5_cams

    opened by CorneliusHsiao 1
Releases(v0.1)
Owner
Meta Research
Meta Research
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022