PAWS 🐾 Predicting View-Assignments with Support Samples

Related tags

Deep Learningsuncet
Overview

PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples.

CD21_260_SWAV2_PAWS_Flowchart_FINAL

PAWS is a method for semi-supervised learning that builds on the principles of self-supervised distance-metric learning. PAWS pre-trains a model to minimize a consistency loss, which ensures that different views of the same unlabeled image are assigned similar pseudo-labels. The pseudo-labels are generated non-parametrically, by comparing the representations of the image views to those of a set of randomly sampled labeled images. The distance between the view representations and labeled representations is used to provide a weighting over class labels, which we interpret as a soft pseudo-label. By non-parametrically incorporating labeled samples in this way, PAWS extends the distance-metric loss used in self-supervised methods such as BYOL and SwAV to the semi-supervised setting.

Also provided in this repo is a PyTorch implementation of the semi-supervised SimCLR+CT method described in the paper Supervision Accelerates Pretraining in Contrastive Semi-Supervised Learning of Visual Representations. SimCLR+CT combines the SimCLR self-supervised loss with the SuNCEt (supervised noise contrastive estimation) loss for semi-supervised learning.

Pretrained models

We provide the full checkpoints for the PAWS pre-trained models, both with and without fine-tuning. The full checkpoints for the pretrained models contain the backbone, projection head, and prediction head weights. The finetuned model checkpoints, on the other hand, only include the backbone and linear classifier head weights. Top-1 classification accuracy for the pretrained models is reported using a nearest neighbour classifier. Top-1 classification accuracy for the finetuned models is reported using the class labels predicted by the network's last linear layer.

1% labels 10% labels
epochs network pretrained (NN) finetuned pretrained (NN) finetuned
300 RN50 65.4% 66.5% 73.1% 75.5%
200 RN50 64.6% 66.1% 71.9% 75.0%
100 RN50 62.6% 63.8% 71.0% 73.9%

Running PAWS semi-supervised pre-training and fine-tuning

Config files

All experiment parameters are specified in config files (as opposed to command-line-arguments). Config files make it easier to keep track of different experiments, as well as launch batches of jobs at a time. See the configs/ directory for example config files.

Requirements

  • Python 3.8
  • PyTorch install 1.7.1
  • torchvision
  • CUDA 11.0
  • Apex with CUDA extension
  • Other dependencies: PyYaml, numpy, opencv, submitit

Labeled Training Splits

For reproducibilty, we have pre-specified the labeled training images as .txt files in the imagenet_subsets/ and cifar10_subsets/ directories. Based on your specifications in your experiment's config file, our implementation will automatically use the images specified in one of these .txt files as the set of labeled images. On ImageNet, if you happen to request a split of the data that is not contained in imagenet_subsets/ (for example, if you set unlabeled_frac !=0.9 and unlabeled_frac != 0.99, i.e., not 10% labeled or 1% labeled settings), then the code will independently flip a coin at the start of training for each training image with probability 1-unlabeled_frac to determine whether or not to keep the image's label.

Single-GPU training

PAWS is very simple to implement and experiment with. Our implementation starts from the main.py, which parses the experiment config file and runs the desired script (e.g., paws pre-training or fine-tuning) locally on a single GPU.

CIFAR10 pre-training

For example, to pre-train with PAWS on CIFAR10 locally, using a single GPU using the pre-training experiment configs specificed inside configs/paws/cifar10_train.yaml, run:

python main.py
  --sel paws_train
  --fname configs/paws/cifar10_train.yaml

CIFAR10 evaluation

To fine-tune the pre-trained model for a few optimization steps with the SuNCEt (supervised noise contrastive estimation) loss on a single GPU using the pre-training experiment configs specificed inside configs/paws/cifar10_snn.yaml, run:

python main.py
  --sel snn_fine_tune
  --fname configs/paws/cifar10_snn.yaml

To then evaluate the nearest-neighbours performance of the model, locally, on a single GPU, run:

python snn_eval.py
  --model-name wide_resnet28w2 --use-pred
  --pretrained $path_to_pretrained_model
  --unlabeled_frac $1.-fraction_of_labeled_train_data_to_support_nearest_neighbour_classification
  --root-path $path_to_root_datasets_directory
  --image-folder $image_directory_inside_root_path
  --dataset-name cifar10_fine_tune
  --split-seed $which_prespecified_seed_to_split_labeled_data

Multi-GPU training

Running PAWS across multiple GPUs on a cluster is also very simple. In the multi-GPU setting, the implementation starts from main_distributed.py, which, in addition to parsing the config file and launching the desired script, also allows for specifying details about distributed training. For distributed training, we use the popular open-source submitit tool and provide examples for a SLURM cluster, but feel free to edit main_distributed.py for your purposes to specify a different approach to launching a multi-GPU job on a cluster.

ImageNet pre-training

For example, to pre-train with PAWS on 64 GPUs using the pre-training experiment configs specificed inside configs/paws/imgnt_train.yaml, run:

python main_distributed.py
  --sel paws_train
  --fname configs/paws/imgnt_train.yaml
  --partition $slurm_partition
  --nodes 8 --tasks-per-node 8
  --time 1000
  --device volta16gb

ImageNet fine-tuning

To fine-tune a pre-trained model on 4 GPUs using the fine-tuning experiment configs specified inside configs/paws/fine_tune.yaml, run:

python main_distributed.py
  --sel fine_tune
  --fname configs/paws/fine_tune.yaml
  --partition $slurm_partition
  --nodes 1 --tasks-per-node 4
  --time 1000
  --device volta16gb

To evaluate the fine-tuned model locally on a single GPU, use the same config file, configs/paws/fine_tune.yaml, but change training: true to training: false. Then run:

python main.py
  --sel fine_tune
  --fname configs/paws/fine_tune.yaml

Soft Nearest Neighbours evaluation

To evaluate the nearest-neighbours performance of a pre-trained ResNet50 model on a single GPU, run:

python snn_eval.py
  --model-name resnet50 --use-pred
  --pretrained $path_to_pretrained_model
  --unlabeled_frac $1.-fraction_of_labeled_train_data_to_support_nearest_neighbour_classification
  --root-path $path_to_root_datasets_directory
  --image-folder $image_directory_inside_root_path
  --dataset-name $one_of:[imagenet_fine_tune, cifar10_fine_tune]

License

See the LICENSE file for details about the license under which this code is made available.

Citation

If you find this repository useful in your research, please consider giving a star and a citation 🐾

@article{assran2021semisupervised,
  title={Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples}, 
  author={Assran, Mahmoud, and Caron, Mathilde, and Misra, Ishan, and Bojanowski, Piotr and Joulin, Armand, and Ballas, Nicolas, and Rabbat, Michael},
  journal={arXiv preprint arXiv:2104.13963},
  year={2021}
}
@article{assran2020supervision,
  title={Supervision Accelerates Pretraining in Contrastive Semi-Supervised Learning of Visual Representations},
  author={Assran, Mahmoud, and Ballas, Nicolas, and Castrejon, Lluis, and Rabbat, Michael},
  journal={arXiv preprint arXiv:2006.10803},
  year={2020}
}
Owner
Facebook Research
Facebook Research
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023