Prototype-based Incremental Few-Shot Semantic Segmentation

Related tags

Deep LearningFSS
Overview

Prototype-based Incremental Few-Shot Semantic Segmentation

Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 2021 (Poster) Link

Official PyTorch Implementation

teaser

Semantic segmentation models have two fundamental weaknesses: i) they require large training sets with costly pixel-level annotations, and ii) they have a static output space, constrained to the classes of the training set. Toward addressing both problems, we introduce a new task, Incremental Few-Shot Segmentation (iFSS). The goal of iFSS is to extend a pretrained segmentation model with new classes from few annotated images and without access to old training data. To overcome the limitations of existing models iniFSS, we propose Prototype-based Incremental Few-Shot Segmentation (PIFS) that couples prototype learning and knowledge distillation. PIFS exploits prototypes to initialize the classifiers of new classes, fine-tuning the network to refine its features representation. We design a prototype-based distillation loss on the scores of both old and new class prototypes to avoid overfitting and forgetting, and batch-renormalization to cope with non-i.i.d.few-shot data. We create an extensive benchmark for iFSS showing that PIFS outperforms several few-shot and incremental learning methods in all scenarios.

method

How to run

Requirements

We have simple requirements: The main requirements are:

python > 3.1
pytorch > 1.6

If you want to install a custom environment for this codce, you can run the following using conda:

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
conda install tensorboard
conda install jupyter
conda install matplotlib
conda install tqdm
conda install imageio

pip install inplace-abn
conda install -c conda-forge pickle5

Datasets

In the benchmark there are two datasets: Pascal-VOC 2012 and COCO (object only). For the COCO dataset, we followed the COCO-stuff splits and annotations, that you can see here.

To download dataset, follow the scripts: data/download_voc.sh, data/download_coco.sh

To use the annotations of COCO-Stuff in our setting, you should preprocess it by running the provided script.
Please, remember to change the path in the script before launching it! python data/coco/make_annotation.py

Finally, if your datasets are in a different folder, make a soft-link from the target dataset to the data folder. We expect the following tree:

/data/voc/dataset
    /annotations
        <Image-ID>.png
    /images
        <Image-ID>.png
        
/data/coco/dataset
    /annotations
        /train2017
            <Image-ID>.png
        /val2017
            <Image-ID>.png
    /images
        /train2017
            <Image-ID>.png
        /val2017
            <Image-ID>.png

ImageNet Pretrained Models

After setting the dataset, you download the models pretrained on ImageNet using InPlaceABN. Download the ResNet-101 model (we only need it but you can also download other networks if you want to change it). Then, put the pretrained model in the pretrained folder.

Run!

We provide different scripts to run the experiments (see run folder). In the following, we describe the basic structure of them.

First, you should run the base step (or step 0).

exp --method FT --name FT --epochs 30 --lr 0.01 --batch_size 24

In this example, we are running the fine-tuning method (FT). For other methods (COS, SPN, DWI, RT) you can change the method name. WI and PIFS rely on the COS in the step 0, while FT, AMP, LWF, ILT, MIB rely on the FT one.

After this, you can run the incremental steps. There are a few options: (i) the task, (ii) the number of images (n_shot), and (iii) the sampling split (i_shot).

i) The list of tasks is:

voc:
    5-0, 5-1, 5-2, 5-3
coco:
    20-0, 20-1, 20-2, 20-3

For multi-step, you can append an m after the task (e.g., 5-0m)

ii) We tested 1, 2, and 5 shot. You can specify it with the nshot option.

iii) We used three random sampling. You can specify it with the ishot option.

The training will produce both an output on the terminal and it will log on tensorboard at the logs/<Exp_Name> folder. After the training, it will append a row in the csv file logs/results/<dataset>/<task>.csv.

Qualitative Results

qual-voc qual-coco

Cite us!

Please, cite the following article when referring to this code/method.

@InProceedings{cermelli2020prototype,
  title={Prototype-based Incremental Few-Shot Semantic Segmentation },
  author={Cermelli, Fabio and Mancini, Massimiliano and Xian, Yongqin and Akata, Zeynep and Caputo, Barbara},
  booktitle={Proceedings of the 32nd British Machine Vision Conference},
  month={November},
  year={2021}
}
Owner
Fabio Cermelli
My research interest in AI includes Computer vision and Reinforcement learning.
Fabio Cermelli
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023