Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

Overview

G2LTex

This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due to the agreement with other company, some parts can only be released in the form of .so files. More information and the paper can be found on our group website and Qingan's homepage.

Publication

If you find this code useful for your research, please cite our work:

Yanping Fu, Qingan Yan, Long Yang, Jie Liao, Chunxia Xiao. Texture Mapping for 3D Reconstruction with RGB-D Sensor. In CVPR. 2018.

@inproceedings{fu2018texture,
  title={Texture Mapping for 3D Reconstruction with RGB-D Sensor},
  author={Fu, Yanping and Yan, Qingan and Yang, Long and Liao, Jie and Xiao, Chunxia},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={4645--4653},
  year={2018},
  organization={IEEE}
}

How to use

1. Run

To test our algorithm. run G2LTex in command line:

./bin/G2LTex [DIR] [PLY] 

Params explanation: -PLY: The reconstructed model for texture mapping. -DIR: The texture image directory, include rgb images, depth images, and camera trajectory.

The parameters of the camera and the system can be set in the config file.

Config/config.yml

How to install and run this code.

git clone https://github.com/fdp0525/G2LTex.git
cd G2LTex/bin
./G2LTex ../Data/bloster/textureimages ../Data/bloster/bloster.ply

We need to modify the configuration file config.yml before running the other datasets.

./G2LTex ../Data/apt0/apt0 ../Data/apt0/apt0.ply

2. Input Format

  • Color frames (color_XX.jpg): RGB, 24-bit, JPG.
  • Depth frames (depth_XX.png): depth (mm), 16-bit, PNG (invalid depth is set to 0).
  • Camera poses (color_XX.cam): world-to-camera [tx, ty, tz, R00, R01, R02, R10, R11, R12, R20, R21, R22].

3. Dependencies

The code has following prerequisites:

  • ubuntu 16.04
  • gcc (5.4.0)
  • OpenCV (2.4.10)
  • Eigen (>3.0)
  • png12
  • jpeg

4. Parameters

All the parameters can be set in the file Config/config.yml as follows:

%YAML:1.0
depth_fx: 540.69
depth_fy: 540.69
depth_cx: 479.75
depth_cy: 269.75
depth_width: 960
depth_height: 540

RGB_fx: 1081.37
RGB_fy: 1081.37
RGB_cx: 959.5
RGB_cy: 539.5
RGB_width: 1920
RGB_height: 1080
.
.
.

5. Results

Some precomputed results can be found in the folder results/.

Owner
Fu Yanping(付燕平)
Fu Yanping(付燕平)
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022