This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

Overview

On Quantitative Evaluations of Counterfactuals

Install

To install required packages with conda, run the following command:

> conda env create -f requirements.yml

Code

The code contains all the evaluation metrics used in the paper as well as the models and the data.

To evaluate methods, you need to choose a config from the configs directory and to choose which metric to apply. The code will then evaluate the chosen metrics on counterfactuals from all three methods (GB, GL, GEN) and store the results in an appropriate subdirectory in outputs. If you, e.g., want to run all metrics on the MNIST dataset, use the following command:

(cfeval) > python main.py --eval -c configs/mnist/mnist.ini -a

Afterwards you can enumerate the directory by

(cfeval) > python main.py --list

to get an output like the following:

> Listing dirs
000: ./output/celeba_makeup_[0]
001: ./output/fake_mnist_[0]
002: ./output/mnist_0_1_[0]
003: ./output/mnist_[0]

Now, results can be printed for the MNIST dataset (idx 3 above) by

(cfeval) > python main.py --print -c 3 

To get a result like

# # # # # # # # # # # # # # # # # # # # 
# MNIST
# # # # # # # # # # # # # # # # # # # # 
Method \ Metric    TargetClassValidity    ElasticNet    IM1          IM2             FID  Oracle
-----------------  ---------------------  ------------  -----------  -----------  ------  ------------
GB                 99.59 (0.13)           16.07 (0.18)  0.99 (0.00)  0.55 (0.01)   50.23  73.38 (0.87)
GL                 100.00 (0.00)          42.76 (0.31)  0.99 (0.00)  0.53 (0.00)  308.43  37.71 (0.95)
GEN                99.97 (0.03)           99.17 (0.58)  0.88 (0.00)  0.17 (0.00)   90.73  93.13 (0.50)

Directory overview:

File Description
ckpts Contains all the (Keras) models used by the various metrics.
data Contains the data used, both counterfactual examples from GB, GL, and GEN, and original input data.
configs Contains config files specifying experimental details like dataset, normalization, etc.
data Contains the data in numpy arrays.
dataset Code for loading data.
evaluate Implementations of all the metrics.
output Directory to hold computed results. Directory already contains results from paper.
config.py Reads config files from configs
constants.py Method and metric names.
listing.py Utility for indexing output dirs (see description below)
main.py Main file to run all code through.
print_results.py Utillity function for printing results from json files in the output directory.
Owner
Frederik Hvilshøj
PhD Student. Finishing PhD in Machine Learning Fall 2021.
Frederik Hvilshøj
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022