Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Overview

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements

[paper (NeurIPS 2021)] [paper (arXiv)] [code]

Authors: Zinan Lin, Vyas Sekar, Giulia Fanti

Abstract: Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs). However, there is currently limited understanding of why SN is effective. In this work, we show that SN controls two important failure modes of GAN training: exploding and vanishing gradients. Our proofs illustrate a (perhaps unintentional) connection with the successful LeCun initialization. This connection helps to explain why the most popular implementation of SN for GANs requires no hyper-parameter tuning, whereas stricter implementations of SN have poor empirical performance out-of-the-box. Unlike LeCun initialization which only controls gradient vanishing at the beginning of training, SN preserves this property throughout training. Building on this theoretical understanding, we propose a new spectral normalization technique: Bidirectional Scaled Spectral Normalization (BSSN), which incorporates insights from later improvements to LeCun initialization: Xavier initialization and Kaiming initialization. Theoretically, we show that BSSN gives better gradient control than SN. Empirically, we demonstrate that it outperforms SN in sample quality and training stability on several benchmark datasets.


This repo contains the codes for reproducing the experiments of our BSN and different SN variants in the paper. The codes were tested under Python 2.7.5, TensorFlow 1.14.0.

Preparing datasets

CIFAR10

Download cifar-10-python.tar.gz from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz (or from other sources).

STL10

Download stl10_binary.tar.gz from http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz (or from other sources), and put it in dataset_preprocess/STL10 folder. Then run python preprocess.py. This code will resize the images into 48x48x3 format, and save the images in stl10.npy.

CelebA

Download img_align_celeba.zip from https://www.kaggle.com/jessicali9530/celeba-dataset (or from other sources), and put it in dataset_preprocess/CelebA folder. Then run python preprocess.py. This code will crop and resize the images into 64x64x3 format, and save the images in celeba.npy.

ImageNet

Download ILSVRC2012_img_train.tar from http://www.image-net.org/ (or from other sources), and put it in dataset_preprocess/ImageNet folder. Then run python preprocess.py. This code will crop and resize the images into 128x128x3 format, and save the images in ILSVRC2012folder. Each subfolder in ILSVRC2012 folder corresponds to one class. Each npy file in the subfolders corresponds to an image.

Training BSN and SN variants

Prerequisites

The codes are based on GPUTaskScheduler library, which helps you automatically schedule the jobs among GPU nodes. Please install it first. You may need to change GPU configurations according to the devices you have. The configurations are set in config.py in each directory. Please refer to GPUTaskScheduler's GitHub page for the details of how to make proper configurations.

You can also run these codes without GPUTaskScheduler. Just run python gan.py in gan subfolders.

CIFAR10, STL10, CelebA

Preparation

Copy the preprocessed datasets from the previous steps into the following paths:

  • CIFAR10: /data/CIFAR10/cifar-10-python.tar.gz.
  • STL10: /data/STL10/cifar-10-stl10.npy.
  • CelebA: /data/CelebA/celeba.npy.

Here means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-CNN.
  • SN with the same gammas: same_gamma-CNN.
  • SN with different gammas: diff_gamma-CNN.

Alternatively, you can directly modify the dataset paths in /gan_task.py to the path of the preprocessed dataset folders.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

ImageNet

Preparation

Copy the preprocessed folder ILSVRC2012 from the previous steps to /data/imagenet/ILSVRC2012, where means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-ResNet.

Alternatively, you can directly modify the dataset path in /gan_task.py to the path of the preprocessed folder ILSVRC2012.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

The code supports multi-GPU training for speed-up, by separating each data batch equally among multiple GPUs. To do that, you only need to make minor modifications in config.py. For example, if you have two GPUs with IDs 0 and 1, then all you need to do is to (1) change "gpu": ["0"] to "gpu": [["0", "1"]], and (2) change "num_gpus": [1] to "num_gpus": [2]. Note that the number of GPUs might influence the results because in this implementation the batch normalization layers on different GPUs are independent. In our experiments, we were using only one GPU.

Results

The code generates the following result files/folders:

  • /results/ /worker.log : Standard output and error from the code.
  • /results/ /metrics.csv : Inception Score and FID during training.
  • /results/ /sample/*.png : Generated images during training.
  • /results/ /checkpoint/* : TensorFlow checkpoints.
  • /results/ /time.txt : Training iteration timestamps.
Owner
Zinan Lin
Ph.D. student at Electrical and Computer Engineering, Carnegie Mellon University
Zinan Lin
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023