TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

Overview

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL


TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods. We leverage Box2D procedurally generated environments to assess the performance of teacher algorithms in continuous task spaces. Our repository provides:

  • Two parametric Box2D environments: Stumps Tracks and Parkour
  • Multiple embodiments with different locomotion skills (e.g. bipedal walker, spider, climbing chimpanzee, fish)
  • Two Deep RL students: SAC and PPO
  • Several ACL algorithms: ADR, ALP-GMM, Covar-GMM, SPDL, GoalGAN, Setter-Solver, RIAC
  • Two benchmark experiments using elements above: Skill-specific comparison and global performance assessment
  • Three notebooks for systematic analysis of results using statistical tests along with visualization tools (plots, videos...) allowing to reproduce our figures

See our documentation for an exhaustive list.

global_schema

Using this, we performed a benchmark of the previously mentioned ACL methods which can be seen in our paper. We also provide additional visualization on our website.

Installation

1- Get the repository

git clone https://github.com/flowersteam/TeachMyAgent
cd TeachMyAgent/

2- Install it, using Conda for example (use Python >= 3.6)

conda create --name teachMyAgent python=3.6
conda activate teachMyAgent
pip install -e .

Note: For Windows users, add -f https://download.pytorch.org/whl/torch_stable.html to the pip install -e . command.

Import baseline results from our paper

In order to benchmark methods against the ones we evaluated in our paper you must download our results:

  1. Go to the notebooks folder
  2. Make the download_baselines.sh script executable: chmod +x download_baselines.sh
  3. Download results: ./download_baselines.sh

WARNING: This will download a zip weighting approximayely 4.5GB. Then, our script will extract the zip file in TeachMyAgent/data. Once extracted, results will weight approximately 15GB.

Usage

See our documentation for details on how to use our platform to benchmark ACL methods.

Development

See CONTRIBUTING.md for details.

Citing

If you use TeachMyAgent in your work, please cite the accompanying paper:

@inproceedings{romac2021teachmyagent,
  author    = {Cl{\'{e}}ment Romac and
               R{\'{e}}my Portelas and
               Katja Hofmann and
               Pierre{-}Yves Oudeyer},
  title     = {TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep
               {RL}},
  booktitle = {Proceedings of the 38th International Conference on Machine Learning,
               {ICML} 2021, 18-24 July 2021, Virtual Event},
  series    = {Proceedings of Machine Learning Research},
  volume    = {139},
  pages     = {9052--9063},
  publisher = {{PMLR}},
  year      = {2021}
}
Owner
Flowers Team
Flowers Team
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022