Tutorial for surrogate gradient learning in spiking neural networks

Overview

SpyTorch

A tutorial on surrogate gradient learning in spiking neural networks

Version: 0.4

DOI

This repository contains tutorial files to get you started with the basic ideas of surrogate gradient learning in spiking neural networks using PyTorch.

You find a brief introductory video accompanying these notebooks here https://youtu.be/xPYiAjceAqU

Feedback and contributions are welcome.

For more information on surrogate gradient learning please refer to:

Neftci, E.O., Mostafa, H., and Zenke, F. (2019). Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine 36, 51–63. https://ieeexplore.ieee.org/document/8891809 preprint: https://arxiv.org/abs/1901.09948

Also see https://github.com/surrogate-gradient-learning

Copyright and license

Copyright 2019-2020 Friedemann Zenke, https://fzenke.net

This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Comments
  • resetting with

    resetting with "out" instead of "rst"?

    • This is a comment, not an issue *

    Hi Friedemann, First of thanks a lot for these great tutorials, I've enjoyed a lot playing with them, and I've learned a lot :-) One question: in the run_snn function, why do you bother constructing the "rst" tensor? Why don't you subtract the "out" tensor, which also contains the output spikes? I've tried, and it seems to work. Just curious. Best,

    Tim

    question 
    opened by tmasquelier 8
  • Problem in SpyTorchTutorial2

    Problem in SpyTorchTutorial2

    Hello,

    It was a very nice and interesting tutorial, thank you for preparing it...

    tutorial1 haven't any problem, but in tutorial 2, some dtype problems occurred... after their fixation, training process was very slow on GTX 980 (I've run on this config some very deep model)... could you please explain your config, and also training time and response time?

    opened by ghost 6
  • Spike times shifted

    Spike times shifted

    I have the impression that the spike recordings are shifted one time step in all tutorials. Could you maybe check if this is indeed the case?

    From my understanding, time step 0 is recorded twice for the spikes, once during initialisation

      mem = torch.zeros((batch_size, nb_hidden), device=device, dtype=dtype)
      spk_rec = [mem]
    

    and once within the simulation of time step 0:

      for t in range(nb_steps):
          mthr = mem-1.0
          out = spike_fn(mthr)
          ...
          spk_rec.append(out)
    

    As a result the indeces appear shifted when comparing

    print(torch.nonzero((mem_rec-1.0) > 0.0))
    print(torch.nonzero(spk_rec))
    

    Thanks, Simon

    opened by smonsays 4
  • Software/Machine description available?

    Software/Machine description available?

    Hey Friedemann,

    thanks for making the examples available, they look very helpful. However, to make them fully reproducible I think that some additional information regarding the "technical dependencies" is needed.

    In particular, the list of used software packages (incl. version and build variant information) plus some specification about the machine hardware (CPU arch, GPUs).

    Preferably, the former could be expressed as a recipe for constructing a container (Dockerfile, or for better HPC-compatibility, a Singularity recipe), maybe even using an explicitly versioning package manager like spack.

    Cheers, Eric

    opened by muffgaga 3
  • Dataset never decompressed

    Dataset never decompressed

    Hello,

    I belive I ran into a possible issue here. Due to line 37 the evaluation in line 38 will always be false if one hasnt already got the uncompressed dataset.

    https://github.com/fzenke/spytorch/blob/9e91eceaf53f17be9e95a3743164224bdbb086bb/notebooks/utils.py#L35-L42

    If I change line 37 to: hdf5_file_path = gz_file_path[:-3] This works for me.

    Best, Aaron

    opened by AaronSpieler 1
  • propagation delay

    propagation delay

    Hi zenke, I have a question about the snn model. If I feed a spike image to a snn with L layers at time step n, the output of the last layer will be affected by the input at time step n + L - 1. In deep networks, the delay should be considered, because it will increase the whole time steps. Screen Shot 2021-12-15 at 4 50 45 PM

    opened by yizx6 1
  • Compute recurrent contribution from spikes

    Compute recurrent contribution from spikes

    Hey Friedemann,

    thank you for the very comprehensive tutorial! I have a question on the way the recurrence is computed in tutorial 4. If I understand the equation for the dynamics of the current correctly, the recurrence should be computed with the spiking neuron state:

    mthr = mem-1.0
    out = spike_fn(mthr)
    h1 = h1_from_input[:,t] + torch.einsum("ab,bc->ac", (out, v1))
    

    Instead in tutorial 4, a separate hidden state is kept, that ignores the spike function:

    h1 = h1_from_input[:,t] + torch.einsum("ab,bc->ac", (h1, v1))
    

    Is this done deliberately? Judging from simulating a few epochs, the two versions seem to perform similarly.

    Thank you,

    Simon

    opened by smonsays 1
  • maybe simplification

    maybe simplification

    I don't understand why the 'rst' variable exists. It seems to always be == 'out'. Changing to rst = out yields same results...

    def spike_fn(x):
        out = torch.zeros_like(x)
        out[x > 0] = 1.0
        return out
    ...
    # Here we loop over time
    for t in range(nb_steps):
        mthr = mem-1.0
        out = spike_fn(mthr) 
        rst = torch.zeros_like(mem)
        c = (mthr > 0)
        rst[c] = torch.ones_like(mem)[c] 
    
    opened by colinator 1
  • Issue in running Tutorial-4

    Issue in running Tutorial-4

    When I am running the following piece of code in Tutorial-4:

    loss_hist = train(x_train, y_train, lr=2e-4, nb_epochs=nb_epochs)

    I am getting the following error: pic3

    Can you please suggest me how to resolve this issue?

    opened by paglabhola 0
Releases(v0.3)
Owner
Friedemann Zenke
Friedemann Zenke
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
ocaml-torch provides some ocaml bindings for the PyTorch tensor library.

ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.

Laurent Mazare 369 Jan 03, 2023
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).

Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of

Karen Ullrich 190 Dec 30, 2022
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
An implementation of Performer, a linear attention-based transformer, in Pytorch

Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random

Phil Wang 900 Dec 22, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022
Fast Discounted Cumulative Sums in PyTorch

TODO: update this README! Fast Discounted Cumulative Sums in PyTorch This repository implements an efficient parallel algorithm for the computation of

Daniel Povey 7 Feb 17, 2022
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023