A clear, concise, simple yet powerful and efficient API for deep learning.

Overview

The Gluon API Specification

The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for all developers, regardless of their deep learning framework of choice. The Gluon API offers a flexible interface that simplifies the process of prototyping, building, and training deep learning models without sacrificing training speed. It offers four distinct advantages:

  • Simple, Easy-to-Understand Code: Gluon offers a full set of plug-and-play neural network building blocks, including predefined layers, optimizers, and initializers.
  • Flexible, Imperative Structure: Gluon does not require the neural network model to be rigidly defined, but rather brings the training algorithm and model closer together to provide flexibility in the development process.
  • Dynamic Graphs: Gluon enables developers to define neural network models that are dynamic, meaning they can be built on the fly, with any structure, and using any of Python’s native control flow.
  • High Performance: Gluon provides all of the above benefits without impacting the training speed that the underlying engine provides.

Gluon API Reference

Getting Started with the Gluon Interface

The Gluon specification has already been implemented in Apache MXNet, so you can start using the Gluon interface by following these easy steps for installing the latest master version of MXNet. We recommend using Python version 3.3 or greater and implementing this example using a Jupyter notebook. Setup of Jupyter is included in the MXNet installation instructions. For our example we’ll walk through how to build and train a simple two-layer neural network, called a multilayer perceptron.

First, import mxnet and MXNet's implementation of the gluon specification. We will also need autograd, ndarray, and numpy.

import mxnet as mx
from mxnet import gluon, autograd, ndarray
import numpy as np

Next, we use gluon.data.DataLoader, Gluon's data iterator, to hold the training and test data. Iterators are a useful object class for traversing through large datasets. We pass Gluon's DataLoader a helper, gluon.data.vision.MNIST, that will pre-process the MNIST handwriting dataset, getting into the right size and format, using parameters to tell it which is test set and which is the training set.

train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=True, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                      batch_size=32, shuffle=True)
test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=False, transform=lambda data, label: (data.astype(np.float32)/255, label)),
                                     batch_size=32, shuffle=False)                     

Now, we are ready to define the actual neural network, and we can do so in five simple lines of code. First, we initialize the network with net = gluon.nn.Sequential(). Then, with that net, we create three layers using gluon.nn.Dense: the first will have 128 nodes, and the second will have 64 nodes. They both incorporate the relu by passing that into the activation function parameter. The final layer for our model, gluon.nn.Dense(10), is used to set up the output layer with the number of nodes corresponding to the total number of possible outputs. In our case with MNIST, there are only 10 possible outputs because the pictures represent numerical digits of which there are only 10 (i.e., 0 to 9).

# First step is to initialize your model
net = gluon.nn.Sequential()
# Then, define your model architecture
with net.name_scope():
    net.add(gluon.nn.Dense(128, activation="relu")) # 1st layer - 128 nodes
    net.add(gluon.nn.Dense(64, activation="relu")) # 2nd layer – 64 nodes
    net.add(gluon.nn.Dense(10)) # Output layer

Prior to kicking off the model training process, we need to initialize the model’s parameters and set up the loss with gluon.loss.SoftmaxCrossEntropyLoss() and model optimizer functions with gluon.Trainer. As with creating the model, these normally complicated functions are distilled to one line of code each.

# We start with random values for all of the model’s parameters from a
# normal distribution with a standard deviation of 0.05
net.collect_params().initialize(mx.init.Normal(sigma=0.05))

# We opt to use softmax cross entropy loss function to measure how well the # model is able to predict the correct answer
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

# We opt to use the stochastic gradient descent (sgd) training algorithm
# and set the learning rate hyperparameter to .1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

Running the training is fairly typical and all the while using Gluon's functionality to make the process simple and seamless. There are four steps: (1) pass in a batch of data; (2) calculate the difference between the output generated by the neural network model and the actual truth (i.e., the loss); (3) use Gluon's autograd to calculate the derivatives of the model’s parameters with respect to their impact on the loss; and (4) use the Gluon's trainer method to optimize the parameters in a way that will decrease the loss. We set the number of epochs at 10, meaning that we will cycle through the entire training dataset 10 times.

epochs = 10
for e in range(epochs):
    for i, (data, label) in enumerate(train_data):
        data = data.as_in_context(mx.cpu()).reshape((-1, 784))
        label = label.as_in_context(mx.cpu())
        with autograd.record(): # Start recording the derivatives
            output = net(data) # the forward iteration
            loss = softmax_cross_entropy(output, label)
            loss.backward()
        trainer.step(data.shape[0])
        # Provide stats on the improvement of the model over each epoch
        curr_loss = ndarray.mean(loss).asscalar()
    print("Epoch {}. Current Loss: {}.".format(e, curr_loss))

We now have a trained neural network model, and can see how the accuracy improves over each epoch.

A Jupyter notebook of this code has been provided for your convenience.

To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models.

License

Apache 2.0

Owner
Gluon API
Gluon API
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022