Machine Learning Algorithms

Overview

Machine-Learning-Algorithms

In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the person's favorite shopping type based on the information provided. In this context, 13 questions were asked to the user. As a result of these questions, the estimation of the shopping type, which is a classification problem, will be carried out with 5 different algorithms.

These algorithms;

  • Logistic Regression
  • Random Forest Classifier
  • Support Vector Machine
  • K Neighbors
  • Decision Tree

algorithms will have a total of 12 parameters

A total of 219 people participated in the survey and the answers given to this form were used in the training of the algorithm.

Target variables to be estimated;

  • Clothing
  • Technology
  • Home/Life
  • Book/Magazine

The questions asked to make the estimation are as follows:

  • Gender
  • Age
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • What is your favorite season?
  • What is the importance of the dollar exchange rate for your shopping?
  • What is your satisfaction level with your budget for shopping?
  • How would you rate your social life?
  • Which of the online shopping sites do you prefer?
  • How often do you go shopping?
  • What is your average sleep time per day?
  • What is your favorite type of shopping? // target

The dataset, which is in the form of a csv file, is read to the system as a dataframe. And the column of information in which hour and minute the user filled out the form, which does not make sense for our algorithm, is removed.

Since the numbers in some columns is way more different than the others before the PCA operation is performed, the standardization process is applied to the columns so that they do not have a greater effect than the combination of these columns during the PCA operation.

The features and target columns to be used during the export of the dataset to the algorithms are determined.

In order to fit the resulting algorithms, the initial state of the dataset, its normalized state and the pca applied states are kept separately. The generated data is divided into parts as train = 0.8 and test = 0.2. Cross Validation process will be applied on 0.8 train data.

Before giving the dataset to the 5 algorithms, the answers written in the text in the dataset and the text in the other questions are encoded and the dataset is converted into numbers.

The 5 algorithms are functions from the sklearn library. The Cross Validation process was performed using the GridSearchCV() function, excluding the Logistic Regression algorithm. In the Logistic regression algorithm, since it is possible to do Cross Validation with the logistic regression function it is not necessary to use GridSearchCV().

GridSearchCV() applies K-Fold Cross Validation by trying the parameters I gave for the function, the number of K for my project is 10. By dividing the cross validation process parameters and the train data we provide, it is determined at which values we can get the best result.

An algorithm is created using the determined parameters and the algorithm is tested with the test data to be fitted with the train data.

Detailed information about dataset can be found in the report.

Owner
Göktuğ Ayar
Computer Engineering student at Yildiz Technical University
Göktuğ Ayar
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

6.2k Jan 01, 2023
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022