AIST++ API This repo contains starter code for using the AIST++ dataset.

Overview

AIST++ API

This repo contains starter code for using the AIST++ dataset. To download the dataset or explore details of this dataset, please go to our dataset website.

Installation

The code has been tested on python>=3.7. You can install the dependencies and this repo by:

pip install -r requirements.txt
python setup.py install

You also need to make sure ffmpeg is installed on your machine, if you would like to visualize the annotations using this api.

How to use

We provide demo code for loading and visualizing AIST++ annotations. Note AIST++ annotations and videos, as well as the SMPL model (for SMPL visualization only) are required to run the demo code.

The directory structure of the data is expected to be:


├── motions/
├── keypoints2d/
├── keypoints3d/
├── splits/
├── cameras/
└── ignore_list.txt


└── *.mp4


├── SMPL_MALE.pkl
└── SMPL_FEMALE.pkl

Visualize 2D keypoints annotation

The command below will plot 2D keypoints onto the raw video and save it to the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \
  --save_dir ./visualization/ \
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \
  --mode 2D

Visualize 3D keypoints annotation

The command below will project 3D keypoints onto the raw video using camera parameters, and save it to the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \
  --save_dir ./visualization/ \
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \
  --mode 3D

Visualize the SMPL joints annotation

The command below will first calculate the SMPL joint locations from our motion annotations (joint rotations and root trajectories), then project them onto the raw video and plot. The result will be saved into the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \ 
  --smpl_dir <SMPL_DIR> \
  --save_dir ./visualization/ \ 
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \ 
  --mode SMPL

Multi-view 3D keypoints and motion reconstruction

This repo also provides code we used for constructing this dataset from the multi-view AIST Dance Video Database. The construction pipeline starts with frame-by-frame 2D keypoint detection and manual camera estimation. Then triangulation and bundle adjustment are applied to optimize the camera parameters as well as the 3D keypoints. Finally we sequentially fit the SMPL model to 3D keypoints to get a motion sequence represented using joint angles and a root trajectory. The following figure shows our pipeline overview.

AIST++ construction pipeline overview.

The annotations in AIST++ are in COCO-format for 2D & 3D keypoints, and SMPL-format for human motion annotations. It is designed to serve general research purposes. However, in some cases you might need the data in different format (e.g., Openpose / Alphapose keypoints format, or STAR human motion format). With the code we provide, it should be easy to construct your own version of AIST++, with your own keypoint detector or human model definition.

Step 1. Assume you have your own 2D keypoint detection results stored in , you can start by preprocessing the keypoints into the .pkl format that we support. The code we used at this step is as follows but you might need to modify the script run_preprocessing.py in order to be compatible with your own data.

python processing/run_preprocessing.py \
  --keypoints_dir <KEYPOINTS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/keypoints2d/

Step 2. Then you can estimate the camera parameters using your 2D keypoints. This step is optional as you can still use our camera parameter estimates which are quite accurate. At this step, you will need the /cameras/mapping.txt file which stores the mapping from videos to different environment settings.

# If you would like to estimate your own camera parameters:
python processing/run_estimate_camera.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/cameras/
# Or you can skip this step by just using our camera parameter estimates.

Step 3. Next step is to perform 3D keypoints reconstruction from multi-view 2D keypoints and camera parameters. You can just run:

python processing/run_estimate_keypoints.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/keypoints3d/

Step 4. Finally we can estimate SMPL-format human motion data by fitting the 3D keypoints to the SMPL model. If you would like to use another human model such as STAR, you will need to do some modifications in the script run_estimate_smpl.py. The following command runs SMPL fitting.

python processing/run_estimate_smpl.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --smpl_dir <SMPL_DIR> \
  --save_dir <ANNOTATIONS_DIR>/motions/

Note that this step will take several days to process the entire dataset if your machine has only one GPU. In practise, we run this step on a cluster, but are only able to provide the single-threaded version.

MISC.

  • COCO-format keypoint definition:
[
"nose", 
"left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder","right_shoulder", 
"left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", 
"left_knee", "right_knee", "left_ankle", "right_ankle"
]
  • SMPL-format body joint definition:
[
"root", 
"left_hip", "left_knee", "left_foot", "left_toe", 
"right_hip", "right_knee", "right_foot", "right_toe",
"waist", "spine", "chest", "neck", "head", 
"left_in_shoulder", "left_shoulder", "left_elbow", "left_wrist",
"right_in_shoulder", "right_shoulder", "right_elbow", "right_wrist"
]
Owner
Google
Google ❤️ Open Source
Google
Different steganography methods with examples and my own small image database

literally-the-most-useless-project [Different steganography methods with examples and my own small image database] This project currently contains thr

Kamyishka 1 Dec 09, 2022
Academic planner application designed for students and counselors.

Academic planner application designed for students and counselors.

Ali bagheri 2 Dec 31, 2021
Print 'text color' and 'text format' on Term with Python

term-printer Print 'text color' and 'text format' on Term with Python ※ It may not work depending on the OS and shell used. PIP $ pip install term-pri

ななといつ 10 Nov 12, 2022
Airflow Operator for running Soda SQL scans

Airflow Operator for running Soda SQL scans

Todd de Quincey 7 Oct 18, 2022
Percolation simulation using python

PythonPercolation Percolation simulation using python Exemple de percolation : Etude statistique sur le pourcentage de remplissage jusqu'à percolation

Tony Chouteau 1 Sep 08, 2022
Ballcone is a fast and lightweight server-side Web analytics solution.

Ballcone Ballcone is a fast and lightweight server-side Web analytics solution. It requires no JavaScript on your website. Screenshots Design Goals Si

Dmitry Ustalov 49 Dec 11, 2022
Cloud Native sample microservices showcasing Full Stack Observability using AppDynamics and ThousandEyes

Cloud Native Sample Bookinfo App Observability Bookinfo is a sample application composed of four Microservices written in different languages.

Cisco DevNet 13 Jul 21, 2022
Functional interface for concurrent futures, including asynchronous I/O.

Futured provides a consistent interface for concurrent functional programming in Python. It wraps any callable to return a concurrent.futures.Future,

A. Coady 11 Nov 27, 2022
Fabric mod where anyone can PR anything, concerning or not. I'll merge everything as soon as it works.

Guess What Will Happen In This Fabric mod where anyone can PR anything, concerning or not (Unless it's too concerning). I'll merge everything as soon

anatom 65 Dec 25, 2022
Solutions for the Advent of Code 2021 event.

About 📋 This repository holds all of the solution code for the Advent of Code 2021 event. All solutions are done in Python 3.9.9 and done in non-real

robert yin 0 Mar 21, 2022
Replite - An embeddable REPL powered by JupyterLite

replite An embeddable REPL, powered by JupyterLite. Usage To embed the code cons

Jeremy Tuloup 47 Nov 09, 2022
Pulse sequence builder and compiler for q1asm

q1pulse Pulse sequence builder and compiler for q1asm. q1pulse is a simple library to compile pulse sequence to q1asm, the assembly language of Qblox

Sander de Snoo 3 Dec 14, 2022
2 Way Sync Between Notion Database and Google Calendar

Notion-and-Google-Calendar-2-Way-Sync 2 Way Sync Between a Notion Database and Google Calendar WARNING: This repo will be undergoing a good bit of cha

248 Dec 26, 2022
We'll be using HTML, CSS and JavaScript for the frontend

We'll be using HTML, CSS and JavaScript for the frontend. Nothing to install in specific. Open your text-editor and start coding a beautiful front-end.

Mugada sai tilak 1 Dec 15, 2021
Aevsploit İçin Destekde Bulun Papara: 1427113016

Aevsploit İçin Destekde Bulun Papara: 1427113016 Toolu Geliştirmek İçin Fikirlerinizi Bekliyorum Telegram

9 Jun 07, 2022
用于导出墨墨背单词的词库,并生成适用于 List 背单词,不背单词,欧陆词典等的自定义词库

maimemo-export 用于导出墨墨背单词的词库,并生成适用于 List 背单词,欧陆词典,不背单词等的自定义词库。 仓库内已经导出墨墨背单词所有自带词库(暂不包括云词库),多达 900 种词库,可以在仓库中选择需要的词库下载(下载单个文件的方法),也可以去 蓝奏云(密码:666) 下载打包好

ourongxing 293 Dec 29, 2022
A Python script to convert your favorite TV series into an Anki deck.

Ankiniser A Python3.8 script to convert your favorite TV series into an Anki deck. How to install? Download the script with git or download it manualy

37 Nov 03, 2022
Statically typed BNF with semantic actions; A frontend of frontend frameworks; Use your grammar everywhere.

Statically typed BNF with semantic actions; A frontend of frontend frameworks; Use your grammar everywhere.

Taine Zhao 56 Dec 14, 2022
Xbps-install wrapper written in Python that doesn't care about case sensitiveness and package versions

xbi Xbps-install wrapper written in Python that doesn't care about case sensitiveness and package versions. Description This Python script can be easi

Emanuele Sabato 5 Apr 11, 2022
A tool to allow New World players to calculate the best place to put their Attribute Points for their build and level

New World Damage Simulator A tool designed to take a characters base stats including armor and weapons, level, and base damage of their items (slash d

Joseph P Langford 31 Nov 01, 2022