Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Overview

Compressive Visual Representations

This repository contains the source code for our paper, Compressive Visual Representations. We developed information-compressed versions of the SimCLR and BYOL self-supervised learning algorithms, which we call C-SimCLR and C-BYOL, using the Conditional Entropy Bottleneck, and achieved significant improvements in accuracy and robustness, yielding linear evaluation performance competitive with fully supervised models.

cvr_perf

We include implementations of the C-SimCLR and C-BYOL algorithms developed in our paper, as well as SimCLR and BYOL baselines.

Getting Started

Install the necessary dependencies with pip install -r requirements.txt. We recommend creating a new virtual environment.

To train a model with C-SimCLR on ImageNet run bash scripts/csimclr.sh. And to train a model with C-BYOL, run bash scripts/cbyol.sh.

Refer to the scripts for further configuration options, and also to train the corresponding SimCLR and BYOL baselines.

These command lines use the hyperparameters used to train the models in our paper. In particular, we used a batch size of 4096 using 32 Cloud TPUs. Using different accelerators will require reducing the batch size. To get started with Google Cloud TPUs, we recommend following this tutorial.

Checkpoints

The following table contains pretrained checkpoints for C-SimCLR, C-BYOL and also their respective baselines, SimCLR and BYOL. All models are trained on ImageNet. The Top-1 accuracy is obtained by training a linear classifier on top of a ``frozen'' backbone whilst performing self-supervised training of the network.

Algorithm Backbone Training epochs ImageNet Top-1 Checkpoint
SimCLR ResNet 50 1000 71.1 link
SimCLR ResNet 50 2x 1000 74.6 link
C-SimCLR ResNet 50 1000 71.8 link
C-SimCLR ResNet 50 2x 1000 74.7 link
BYOL ResNet 50 1000 74.4 link
BYOL ResNet 50 2x 1000 77.3 link
C-BYOL ResNet 50 1000 75.9 link
C-BYOL ResNet 50 2x 1000 79.1 link
C-BYOL ResNet 101 1000 78.0 link
C-BYOL ResNet 152 1000 78.8 link
C-BYOL ResNet 50 1500 76.0 link

Reference

If you use C-SimCLR or C-BYOL, please use the following BibTeX entry.

@InProceedings{lee2021compressive,
  title={Compressive Visual Representations},
  author={Lee, Kuang-Huei and Arnab, Anurag and Guadarrama, Sergio and Canny, John and Fischer, Ian},
  booktitle={NeurIPS},
  year={2021}
}

Credits

This repository is based on SimCLR. We also match our BYOL implementation in Tensorflow 2 to the original implementation of BYOL in JAX.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021