Tensorflow 2 implementation of our high quality frame interpolation neural network

Overview

FILM: Frame Interpolation for Large Scene Motion

Project | Paper | YouTube | Benchmark Scores

Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn't use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone.

FILM: Frame Interpolation for Large Motion
Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, Brian Curless
Google Research
Technical Report 2022.

A sample 2 seconds moment. FILM transforms near-duplicate photos into a slow motion footage that look like it is shot with a video camera.

Installation

  • Get Frame Interpolation source codes
> git clone https://github.com/google-research/frame-interpolation frame_interpolation
  • Optionally, pull the recommended Docker base image
> docker pull gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
  • Install dependencies
> pip install -r frame_interpolation/requirements.txt
> apt-get install ffmpeg

Pre-trained Models

  • Create a directory where you can keep large files. Ideally, not in this directory.
> mkdir 
   

   
  • Download pre-trained TF2 Saved Models from google drive and put into .

The downloaded folder should have the following structure:

pretrained_models/
├── film_net/
│   ├── L1/
│   ├── VGG/
│   ├── Style/
├── vgg/
│   ├── imagenet-vgg-verydeep-19.mat

Running the Codes

The following instructions run the interpolator on the photos provided in frame_interpolation/photos.

One mid-frame interpolation

To generate an intermediate photo from the input near-duplicate photos, simply run:

> python3 -m frame_interpolation.eval.interpolator_test \
     --frame1 frame_interpolation/photos/one.png \
     --frame2 frame_interpolation/photos/two.png \
     --model_path 
   
    /film_net/Style/saved_model \
     --output_frame frame_interpolation/photos/middle.png \

   

This will produce the sub-frame at t=0.5 and save as 'frame_interpolation/photos/middle.png'.

Many in-between frames interpolation

Takes in a set of directories identified by a glob (--pattern). Each directory is expected to contain at least two input frames, with each contiguous frame pair treated as an input to generate in-between frames.

/film_net/Style/saved_model \ --times_to_interpolate 6 \ --output_video">
> python3 -m frame_interpolation.eval.interpolator_cli \
     --pattern "frame_interpolation/photos" \
     --model_path 
   
    /film_net/Style/saved_model \
     --times_to_interpolate 6 \
     --output_video

   

You will find the interpolated frames (including the input frames) in 'frame_interpolation/photos/interpolated_frames/', and the interpolated video at 'frame_interpolation/photos/interpolated.mp4'.

The number of frames is determined by --times_to_interpolate, which controls the number of times the frame interpolator is invoked. When the number of frames in a directory is 2, the number of output frames will be 2^times_to_interpolate+1.

Datasets

We use Vimeo-90K as our main training dataset. For quantitative evaluations, we rely on commonly used benchmark datasets, specifically:

Creating a TFRecord

The training and benchmark evaluation scripts expect the frame triplets in the TFRecord storage format.

We have included scripts that encode the relevant frame triplets into a tf.train.Example data format, and export to a TFRecord file.

You can use the commands python3 -m frame_interpolation.datasets.create_ _tfrecord --help for more information.

For example, run the command below to create a TFRecord for the Middlebury-other dataset. Download the images and point --input_dir to the unzipped folder path.

> python3 -m frame_interpolation.datasets.create_middlebury_tfrecord \
    --input_dir=
   
     \
    --output_tfrecord_filepath=
    

   

Training

Below are our training gin configuration files for the different loss function:

frame_interpolation/training/
├── config/
│   ├── film_net-L1.gin
│   ├── film_net-VGG.gin
│   ├── film_net-Style.gin

To launch a training, simply pass the configuration filepath to the desired experiment.
By default, it uses all visible GPUs for training. To debug or train on a CPU, append --mode cpu.

> python3 -m frame_interpolation.training.train \
     --gin_config frame_interpolation/training/config/
   
    .gin \
     --base_folder 
     \
     --label 
    

    
   
  • When training finishes, the folder structure will look like this:

   
    /
├── 
    
   

Build a SavedModel

Optionally, to build a SavedModel format from a trained checkpoints folder, you can use this command:

> python3 -m frame_interpolation.training.build_saved_model_cli \
     --base_folder  \
     --label 
   

   
  • By default, a SavedModel is created when the training loop ends, and it will be saved at / .

Evaluation on Benchmarks

Below, we provided the evaluation gin configuration files for the benchmarks we have considered:

frame_interpolation/eval/
├── config/
│   ├── middlebury.gin
│   ├── ucf101.gin
│   ├── vimeo_90K.gin
│   ├── xiph_2K.gin
│   ├── xiph_4K.gin

To run an evaluation, simply pass the configuration file of the desired evaluation dataset.
If a GPU is visible, it runs on it.

> python3 -m frame_interpolation.eval.eval_cli -- \
     --gin_config frame_interpolation/eval/config/
   
    .gin \
     --model_path 
    
     /film_net/L1/saved_model

    
   

The above command will produce the PSNR and SSIM scores presented in the paper.

Citation

If you find this implementation useful in your works, please acknowledge it appropriately by citing:

@inproceedings{reda2022film,
 title = {Frame Interpolation for Large Motion},
 author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
 booktitle = {arXiv},
 year = {2022}
}
@misc{film-tf,
  title = {Tensorflow 2 Implementation of "FILM: Frame Interpolation for Large Scene Motion"},
  author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/frame-interpolation}}
}

Contact: Fitsum Reda ([email protected])

Acknowledgments

We would like to thank Richard Tucker, Jason Lai and David Minnen. We would also like to thank Jamie Aspinall for the imagery included in this repository.

Coding style

  • 2 spaces for indentation
  • 80 character line length
  • PEP8 formatting

Disclaimer

This is not an officially supported Google product.

Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022