rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Overview

rliable

rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Desideratum Current evaluation approach Our Recommendation
Uncertainty in aggregate performance Point estimates:
  • Ignore statistical uncertainty
  • Hinder results reproducibility
Interval estimates using stratified bootstrap confidence intervals (CIs)
Performance variability across tasks and runs Tables with task mean scores:
  • Overwhelming beyond a few tasks
  • Standard deviations frequently omitted
  • Incomplete picture for multimodal and heavy-tailed distributions
Score distributions (performance profiles):
  • Show tail distribution of scores on combined runs across tasks
  • Allow qualitative comparisons
  • Easily read any score percentile
Aggregate metrics for summarizing benchmark performance Mean:
  • Often dominated by performance on outlier tasks
  Median:
  • Statistically inefficient (requires a large number of runs to claim improvements)
  • Poor indicator of overall performance: 0 scores on nearly half the tasks doesn't change it
Interquartile Mean (IQM) across all runs:
  • Performance on middle 50% of combined runs
  • Robust to outlier scores but more statistically efficient than median
To show other aspects of performance gains, report Probability of improvement and Optimality gap

rliable provides support for:

  • Stratified Bootstrap Confidence Intervals (CIs)
  • Performance Profiles (with plotting functions)
  • Aggregate metrics
    • Interquartile Mean (IQM) across all runs
    • Optimality Gap
    • Probability of Improvement

Interactive colab

We provide a colab at bit.ly/statistical_precipice_colab, which shows how to use the library with examples of published algorithms on widely used benchmarks including Atari 100k, ALE, DM Control and Procgen.

Paper

For more details, refer to the accompanying NeurIPS 2021 paper (Oral): Deep Reinforcement Learning at the Edge of the Statistical Precipice.

Installation

To install rliable, run:

pip install -U rliable

To install latest version of rliable as a package, run:

pip install git+https://github.com/google-research/rliable

To import rliable, we suggest:

from rliable import library as rly
from rliable import metrics
from rliable import plot_utils

Aggregate metrics with 95% Stratified Bootstrap CIs

IQM, Optimality Gap, Median, Mean
algorithms = ['DQN (Nature)', 'DQN (Adam)', 'C51', 'REM', 'Rainbow',
              'IQN', 'M-IQN', 'DreamerV2']
# Load ALE scores as a dictionary mapping algorithms to their human normalized
# score matrices, each of which is of size `(num_runs x num_games)`.
atari_200m_normalized_score_dict = ...
aggregate_func = lambda x: np.array([
  metrics.aggregate_median(x),
  metrics.aggregate_iqm(x),
  metrics.aggregate_mean(x),
  metrics.aggregate_optimality_gap(x)])
aggregate_scores, aggregate_score_cis = rly.get_interval_estimates(
  atari_200m_normalized_score_dict, aggregate_func, reps=50000)
fig, axes = plot_utils.plot_interval_estimates(
  aggregate_scores, aggregate_score_cis,
  metric_names=['Median', 'IQM', 'Mean', 'Optimality Gap'],
  algorithms=algorithms, xlabel='Human Normalized Score')
Probability of Improvement
# Load ProcGen scores as a dictionary containing pairs of normalized score
# matrices for pairs of algorithms we want to compare
procgen_algorithm_pairs = {.. , 'x,y': (score_x, score_y), ..}
average_probabilities, average_prob_cis = rly.get_interval_estimates(
  procgen_algorithm_pairs, metrics.probability_of_improvement, reps=50000)
plot_probability_of_improvement(average_probabilities, average_prob_cis)

Sample Efficiency Curve

algorithms = ['DQN (Nature)', 'DQN (Adam)', 'C51', 'REM', 'Rainbow',
              'IQN', 'M-IQN', 'DreamerV2']
# Load ALE scores as a dictionary mapping algorithms to their human normalized
# score matrices across all 200 million frames, each of which is of size
# `(num_runs x num_games x 200)` where scores are recorded every million frame.
ale_all_frames_scores_dict = ...
frames = np.array([1, 10, 25, 50, 75, 100, 125, 150, 175, 200]) - 1
ale_frames_scores_dict = {algorithm: score[:, :, frames] for algorithm, score
                          in ale_all_frames_scores_dict.items()}
iqm = lambda scores: np.array([metrics.aggregate_iqm(scores[..., frame])
                               for frame in range(scores.shape[-1])])
iqm_scores, iqm_cis = rly.get_interval_estimates(
  ale_frames_scores_dict, iqm, reps=50000)
plot_utils.plot_sample_efficiency_curve(
    frames+1, iqm_scores, iqm_cis, algorithms=algorithms,
    xlabel=r'Number of Frames (in millions)',
    ylabel='IQM Human Normalized Score')

Performance Profiles

# Load ALE scores as a dictionary mapping algorithms to their human normalized
# score matrices, each of which is of size `(num_runs x num_games)`.
atari_200m_normalized_score_dict = ...
# Human normalized score thresholds
atari_200m_thresholds = np.linspace(0.0, 8.0, 81)
score_distributions, score_distributions_cis = rly.create_performance_profile(
    atari_200m_normalized_score_dict, atari_200m_thresholds)
# Plot score distributions
fig, ax = plt.subplots(ncols=1, figsize=(7, 5))
plot_utils.plot_performance_profiles(
  score_distributions, atari_200m_thresholds,
  performance_profile_cis=score_distributions_cis,
  colors=dict(zip(algorithms, sns.color_palette('colorblind'))),
  xlabel=r'Human Normalized Score $(\tau)$',
  ax=ax)

The above profile can also be plotted with non-linear scaling as follows:

plot_utils.plot_performance_profiles(
  perf_prof_atari_200m, atari_200m_tau,
  performance_profile_cis=perf_prof_atari_200m_cis,
  use_non_linear_scaling=True,
  xticks = [0.0, 0.5, 1.0, 2.0, 4.0, 8.0]
  colors=dict(zip(algorithms, sns.color_palette('colorblind'))),
  xlabel=r'Human Normalized Score $(\tau)$',
  ax=ax)

Dependencies

The code was tested under Python>=3.7 and uses these packages:

  • arch >= 4.19
  • scipy >= 1.7.0
  • numpy >= 0.9.0
  • absl-py >= 1.16.4

Citing

If you find this open source release useful, please reference in your paper:

@article{agarwal2021deep,
  title={Deep Reinforcement Learning at the Edge of the Statistical Precipice},
  author={Agarwal, Rishabh and Schwarzer, Max and Castro, Pablo Samuel
          and Courville, Aaron and Bellemare, Marc G},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

Disclaimer: This is not an official Google product.

Comments
  • RAD results may be incorrect.

    RAD results may be incorrect.

    Hi @agarwl. I found that the 'step' in RAD's 'eval.log' refers to the policy step. But the 'step' in 'xxx--eval_scores.npy' refers to the environment step. We know that 'environment step = policy step * action_repreat'.

    Here comes a problem: if you use the results of 100k steps in 'eval.log', then you actually evaluate the scores at 100k*action_repeat steps. This will lead to the overestimation of RAD. And I wonder whether you do such incorrect evaluations, or you take the results in 'xxx--eval_scores.npy', which are correct in terms of 'steps'. You may refer to a similar question in https://github.com/MishaLaskin/rad/issues/15.

    I reproduced the results of RAD locally, and I found my results are much worse than the reported ones (in your paper). I list them in the following figure. QQ20211223-153829

    I compare the means of each task. Obviously, there is a huge gap, and my results are close to the ones reported by DrQ authors (see the Table in https://github.com/MishaLaskin/rad/issues/1). I guess you may evaluate scores at incorrect environment steps? So, could you please offer more details when evaluating RAD? Thanks :)

    opened by TaoHuang13 19
  • Installation fails on MacBook Pro with M1 chip

    Installation fails on MacBook Pro with M1 chip

    The installation fails on my MacBook Pro with M1 chip.

    I also tried on a MacBook Pro with an Intel chip (and the same OS version) and on a Linux system: the installation was successful on both configurations.

    $ cd rliable
    $ pip install -e .
    Obtaining file:///Users/quentingallouedec/rliable
      Preparing metadata (setup.py) ... done
    Collecting arch==5.0.1
      Using cached arch-5.0.1.tar.gz (937 kB)
      Installing build dependencies ... error
      error: subprocess-exited-with-error
    
    ... # Log too long for GitHub issue
    
    error: subprocess-exited-with-error
    
    × pip subprocess to install build dependencies did not run successfully.
    │ exit code: 1
    ╰─> See above for output.
    
    note: This error originates from a subprocess, and is likely not a problem with pip.
    

    System info

    • Python version: 3.9
    • System Version: macOS 12.4 (21F79)
    • Kernel Version: Darwin 21.5.0

    What I've tried

    Install only arch 5.0.1

    It seems to be related with the installation of arch. I've tried to pip install arch==5.0.1 and it also failed with the same logs.

    Install the last version of arch

    I've tried to pip install arch (current version: 5.2.0), and it worked.

    Use rliable with the last version of arch

    Since I can install arch==5.2.0, I've tried to make rliable work with arch 5.2.0 (by modifying manually setup.py). Pytest failed. Here is the logs for one of the failing unitest:

    _____________________________________________ LibraryTest.test_stratified_bootstrap_runs_and_tasks _____________________________________________
    
    self = <library_test.LibraryTest testMethod=test_stratified_bootstrap_runs_and_tasks>, task_bootstrap = True
    
        @parameterized.named_parameters(
            dict(testcase_name="runs_only", task_bootstrap=False),
            dict(testcase_name="runs_and_tasks", task_bootstrap=True))
        def test_stratified_bootstrap(self, task_bootstrap):
          """Tests StratifiedBootstrap."""
          bs = rly.StratifiedBootstrap(
              self._x, y=self._y, z=self._z, task_bootstrap=task_bootstrap)
    >     for data, kwdata in bs.bootstrap(5):
    
    tests/rliable/library_test.py:40: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:694: in bootstrap
        yield self._resample()
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = Stratified Bootstrap(no. pos. inputs: 1, no. keyword inputs: 2, ID: 0x15b353a00)
    
        def _resample(self) -> Tuple[Tuple[ArrayLike, ...], Dict[str, ArrayLike]]:
            """
            Resample all data using the values in _index
            """
            indices = self._index
    >       assert isinstance(indices, np.ndarray)
    E       AssertionError
    
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:1294: AssertionError
    _______________________________________________ LibraryTest.test_stratified_bootstrap_runs_only ________________________________________________
    
    self = <library_test.LibraryTest testMethod=test_stratified_bootstrap_runs_only>, task_bootstrap = False
    
        @parameterized.named_parameters(
            dict(testcase_name="runs_only", task_bootstrap=False),
            dict(testcase_name="runs_and_tasks", task_bootstrap=True))
        def test_stratified_bootstrap(self, task_bootstrap):
          """Tests StratifiedBootstrap."""
          bs = rly.StratifiedBootstrap(
              self._x, y=self._y, z=self._z, task_bootstrap=task_bootstrap)
    >     for data, kwdata in bs.bootstrap(5):
    
    tests/rliable/library_test.py:40: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:694: in bootstrap
        yield self._resample()
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = Stratified Bootstrap(no. pos. inputs: 1, no. keyword inputs: 2, ID: 0x15b2ff1f0)
    
        def _resample(self) -> Tuple[Tuple[ArrayLike, ...], Dict[str, ArrayLike]]:
            """
            Resample all data using the values in _index
            """
            indices = self._index
    >       assert isinstance(indices, np.ndarray)
    E       AssertionError
    
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:1294: AssertionError
    

    It seems like there are breaking changes between arch 5.0.1 and arch 5.2.0. Maybe this issue can be solved by updating this dependency to it's current version.

    opened by qgallouedec 10
  • Bug in plot_utils.py

    Bug in plot_utils.py

    Hi,

    In plot_utils.py, I think this line ought to be algorithms = list(point_estimates.keys()) https://github.com/google-research/rliable/blob/72fc16c31c4021b72e7b21f3ba915e1b38cff481/rliable/plot_utils.py#L245 Otherwise, algorithms cannot be indexed in the next line.

    opened by zhefan 2
  • Question about documentation in probability_of_improvement

    Question about documentation in probability_of_improvement

    Hi, I wonder if the documentation in probability_of_improvement function in metrics.py is wrong? Specifically,

    scores_x: A matrix of size (num_runs_x x num_tasks) where scores_x[m][n] represent the score on run n of task m for algorithm X. https://github.com/google-research/rliable/blob/cc5eff51cab488b34cfeb5c5e37eae7a6b4a92b2/rliable/metrics.py#L77)

    Should scores_x[n][m] be the score on run n of task m for algorithm X?

    Thanks.

    opened by zhefan 2
  • Downloading data set always stuck

    Downloading data set always stuck

    Thanks for sharing the repo. There is a problem that every time I download the dataset, it is always stuck somewhere at 9X% Do you know what might cause this?

    ...
    Copying gs://rl-benchmark-data/atari_100k/SimPLe.json...
    Copying gs://rl-benchmark-data/atari_100k/OTRainbow.json...
    [55/59 files][  2.9 MiB/  3.0 MiB]  98% Done
    
    opened by HYDesmondLiu 2
  • Fix dict_keys object -> list

    Fix dict_keys object -> list

    This fixes a downstream task where algorithms[0] in the following line fails because point_estimates.keys() returns a dict_keys object, not a subscriptable list.

    opened by jjshoots 1
  • How can I access the data directly without using gsutil?

    How can I access the data directly without using gsutil?

    I haven't got gsutil set up on my M1 MacBook and I'm not sure the steps are super streamlined. Can I somehow access the data from my browser or download it another way?

    documentation 
    opened by slerman12 1
  • Add installation of compatible arch version to notebook

    Add installation of compatible arch version to notebook

    Latest arch version raises an exception when calling create_performance_profile. Adding !pip install arch==5.0.1 to the notebook file resolves the issue. This change should be reflected in the hosted colab notebook.

    opened by Aladoro 1
  • Customisable linestyles in performance profile plots

    Customisable linestyles in performance profile plots

    The primary reason for this PR is an added option for customising linestyles in performance profile plots. It works in exactly the same way as the colors parameter it already had; a map, None by default which means all methods are plotted as solid lines, but a map can be passed in to change the linestyles of every method's plot.

    Here you can see, as an example, a plot I'm currently working on where I'm using this functionality to have some methods plotted as dotted lines instead of solid ones:

    afbeelding

    Additionally, I have added a .gitignore file to ignore some files that were automatically created when I installed rliable with pip from local source code in my own fork of the repo, and files created by working with rliable source code in the PyCharm IDE.

    opened by DennisSoemers 1
  • README image link broken: ale_score_distributions_new.png

    README image link broken: ale_score_distributions_new.png

    It seems that the file images/ale_score_distributions_new.png pointed to in the README (https://github.com/google-research/rliable#performance-profiles) was deleted in one of the recent commits.

    opened by nirbhayjm 1
  • Urgent question about data aggregates

    Urgent question about data aggregates

    Hi, we compiled the Atari 100k results from DrQ, CURL, and DER, and the mean/median human-norm scores are well below those reported in prior works, including from co-authors of the rliable paper.

    We have median human-norm scores all around 0.10 - 0.12.

    Is this accurate? Of all of these, DER (the oldest of the algs) has the highest mean human-norm score.

    opened by slerman12 1
Releases(v1.0)
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
202 Jan 06, 2023
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023