RoboDesk A Multi-Task Reinforcement Learning Benchmark

Related tags

Deep Learningrobodesk
Overview

RoboDesk

PyPI

A Multi-Task Reinforcement Learning Benchmark

Robodesk Banner

If you find this open source release useful, please reference in your paper:

@misc{kannan2021robodesk,
  author = {Harini Kannan and Danijar Hafner and Chelsea Finn and Dumitru Erhan},
  title = {RoboDesk: A Multi-Task Reinforcement Learning Benchmark},
  year = {2021},
  howpublished = {\url{https://github.com/google-research/robodesk}},
}

Highlights

  • Diversity: RoboDesk includes 9 diverse tasks that test for a variety of different behaviors within the same environment, making it useful for evaluating transfer, multi-task learning, and global exploration.
  • Complexity: The high-dimensional image inputs contain objects of different shapes and colors, whose initial positions are randomized to avoid naive memorization and require learning algorithms to generalize.
  • Robustness: We carefully designed and tested RoboDesk to ensure fast and stable physics simulation. This avoids objects from intersecting, getting stuck, or quickly flying away, a common problem with some existing environments.
  • Lightweight: RoboDesk comes as a self-contained Python package with few dependencies. The source code is clean and pragmatic, making it a useful blueprint for creating new MuJoCo environments.

Training Agents

Installation: pip3 install -U robodesk

The environment follows the OpenAI Gym interface:

import robodesk

env = robodesk.RoboDesk(seed=0)
obs = env.reset()
assert obs.shape == (64, 64, 3)

done = False
while not done:
  action = env.action_space.sample()
  obs, reward, done, info = env.step(action)

Tasks

Robodesk Tasks

The behaviors above were learned using the Dreamer agent. These policies have been learned from scratch and only from pixels, not proprioceptive states.

Task Description
open_slide Push the sliding door all the way to the right, navigating around the other objects.
open_drawer Pull the dark brown drawer all the way open.
push_green Push the green button to turn the green light on.
stack_blocks Stack the upright blue block on top of the flat green block.
upright_block_off_table Push the blue upright block off the table.
flat_block_in_bin Push the green flat block into the blue bin.
flat_block_in_shelf Push the green flat block into the shelf, navigating around the other blocks.
lift_upright_block Grasp the blue upright block and lift it above the table.
lift_ball Grasp the magenta ball and lift it above the table.

Environment Details

Constructor

robodesk.RoboDesk(task='open_slide', reward='dense', action_repeat=1, episode_length=500, image_size=64)
Parameter Description
task Available tasks are open_slide, open_drawer, push_green, stack, upright_block_off_table, flat_block_in_bin, flat_block_in_shelf, lift_upright_block, lift_ball.
reward Available reward types are dense, sparse, success. Success gives only the first sparse reward during the episode, useful for computing success rates during evaluation.
action_repeat Reduces the control frequency by applying each action multiple times. This is faster than using an environment wrapper because only the needed images are rendered.
episode_length Time limit for the episode, can be None.
image_size Size of the image observations in pixels, used for both height and width.

Reward

All rewards are bound between 0 and 1. There are three types of rewards available:

  • Dense rewards are based on Euclidean distances between the objects and their target positions and can include additional terms, for example to encourage the arm to reach the object. These are the easiest rewards for learning.
  • Sparse rewards are either 0 or 1 based on whether the target object is in the target area or not, according to a fixed threshold. Learning from sparse rewards is more challenging.
  • Success rewards are equivalent to the sparse rewards, except that only the first reward is given during each episode. As a result, an episode return of 0 means failure and 1 means sucess at the task. This should only be used during evaluation.

Termination

Episodes end after 500 time steps by default. There are no early terminations.

Observation Space

Each observation is a dictionary that contains the current image, as well as additional information. For the standard benchmark, only the image should be used for learning. The observation dictionary contains the following keys:

Key Space
image Box(0, 255, (64, 64, 3), np.uint8)
qpos_robot Box(-np.inf, np.inf, (9,), np.float32)
qvel_robot Box(-np.inf, np.inf, (9,), np.float32)
qpos_objects Box(-np.inf, np.inf, (26,), np.float32)
qvel_objects Box(-np.inf, np.inf, (26,), np.float32)
end_effector Box(-np.inf, np.inf, (3,), np.float32)

Action Space

RoboDesk uses end effector control with a simple bounded action space:

Box(-1, 1, (5,), np.float32)

Acknowledgements

We thank Ben Eysenbach and Debidatta Dwibedi for their helpful feedback.

Our benchmark builds upon previously open-sourced work. We build upon the desk XMLs first introduced in [1], the Franka XMLs open-sourced in [2], and the Franka meshes open-sourced in [3].

Questions

Please open an issue on Github.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022