Code for "Layered Neural Rendering for Retiming People in Video."

Overview

Layered Neural Rendering in PyTorch

This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering for Retiming People in Video."

This is not an officially supported Google product.

Prerequisites

  • Linux
  • Python 3.6+
  • NVIDIA GPU + CUDA CuDNN

Installation

This code has been tested with PyTorch 1.4 and Python 3.8.

  • Install PyTorch 1.4 and other dependencies.
    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

Data Processing

  • Download the data for a video used in our paper (e.g. "reflection"):
bash ./datasets/download_data.sh reflection
  • Or alternatively, download all the data by specifying all.
  • Download the pretrained keypoint-to-UV model weights:
bash ./scripts/download_kp2uv_model.sh

The pretrained model will be saved at ./checkpoints/kp2uv/latest_net_Kp2uv.pth.

  • Generate the UV maps from the keypoints:
bash datasets/prepare_iuv.sh ./datasets/reflection

Training

  • To train a model on a video (e.g. "reflection"), run:
python train.py --name reflection --dataroot ./datasets/reflection --gpu_ids 0,1
  • To view training results and loss plots, visit the URL http://localhost:8097. Intermediate results are also at ./checkpoints/reflection/web/index.html.

You can find more scripts in the scripts directory, e.g. run_${VIDEO}.sh which combines data processing, training, and saving layer results for a video.

Note:

  • It is recommended to use >=2 GPUs, each with >=16GB memory.
  • The training script first trains the low-resolution model for --num_epochs at --batch_size, and then trains the upsampling module for --num_epochs_upsample at --batch_size_upsample. If you do not need the upsampled result, pass --num_epochs_upsample 0.
  • Training the upsampling module requires ~2.5x memory as the low-resolution model, so set batch_size_upsample accordingly. The provided scripts set the batch sizes appropriately for 2 GPUs with 16GB memory.
  • GPU memory scales linearly with the number of layers.

Saving layer results from a trained model

  • Run the trained model:
python test.py --name reflection --dataroot ./datasets/reflection --do_upsampling
  • The results (RGBA layers, videos) will be saved to ./results/reflection/test_latest/.
  • Passing --do_upsampling uses the results of the upsampling module. If the upsampling module hasn't been trained (num_epochs_upsample=0), then remove this flag.

Custom video

To train on your own video, you will have to preprocess the data:

  1. Extract the frames, e.g.
    mkdir ./datasets/my_video && cd ./datasets/my_video 
    mkdir rgb && ffmpeg -i video.mp4 rgb/%04d.png
    
  2. Resize the video to 256x448 and save the frames in my_video/rgb_256, and resize the video to 512x896 and save in my_video/rgb_512.
  3. Run AlphaPose and Pose Tracking on the frames. Save results as my_video/keypoints.json
  4. Create my_video/metadata.json following these instructions.
  5. If your video has camera motion, either (1) stabilize the video, or (2) maintain the camera motion by computing homographies and saving as my_video/homographies.txt. See scripts/run_cartwheel.sh for a training example with camera motion, and see ./datasets/cartwheel/homographies.txt for formatting.

Note: Videos that are suitable for our method have the following attributes:

  • Static camera or limited camera motion that can be represented with a homography.
  • Limited number of people, due to GPU memory limitations. We tested up to 7 people and 7 layers. Multiple people can be grouped onto the same layer, though they cannot be individually retimed.
  • People that move relative to the background (static people will be absorbed into the background layer).
  • We tested a video length of up to 200 frames (~7 seconds).

Citation

If you use this code for your research, please cite the following paper:

@inproceedings{lu2020,
  title={Layered Neural Rendering for Retiming People in Video},
  author={Lu, Erika and Cole, Forrester and Dekel, Tali and Xie, Weidi and Zisserman, Andrew and Salesin, David and Freeman, William T and Rubinstein, Michael},
  booktitle={SIGGRAPH Asia},
  year={2020}
}

Acknowledgments

This code is based on pytorch-CycleGAN-and-pix2pix.

Owner
Google
Google ❤️ Open Source
Google
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022