This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.

Overview

UIS-RNN

Build Status Python application PyPI Version Python Versions Downloads codecov Documentation

Overview

This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of segmenting and clustering sequential data by learning from examples.

This algorithm was originally proposed in the paper Fully Supervised Speaker Diarization.

The work has been introduced by Google AI Blog.

gif

Disclaimer

This open source implementation is slightly different than the internal one which we used to produce the results in the paper, due to dependencies on some internal libraries.

We CANNOT share the data, code, or model for the speaker recognition system (d-vector embeddings) used in the paper, since the speaker recognition system heavily depends on Google's internal infrastructure and proprietary data.

This library is NOT an official Google product.

We welcome community contributions (guidelines) to the uisrnn/contrib folder. But we won't be responsible for the correctness of any community contributions.

Dependencies

This library depends on:

  • python 3.5+
  • numpy 1.15.1
  • pytorch 1.3.0
  • scipy 1.1.0 (for evaluation only)

Getting Started

YouTube

Install the package

Without downloading the repository, you can install the package by:

pip3 install uisrnn

or

python3 -m pip install uisrnn

Run the demo

To get started, simply run this command:

python3 demo.py --train_iteration=1000 -l=0.001

This will train a UIS-RNN model using data/toy_training_data.npz, then store the model on disk, perform inference on data/toy_testing_data.npz, print the inference results, and save the averaged accuracy in a text file.

PS. The files under data/ are manually generated toy data, for demonstration purpose only. These data are very simple, so we are supposed to get 100% accuracy on the testing data.

Run the tests

You can also verify the correctness of this library by running:

bash run_tests.sh

If you fork this library and make local changes, be sure to use these tests as a sanity check.

Besides, these tests are also great examples for learning the APIs, especially tests/integration_test.py.

Core APIs

Glossary

General Machine Learning Speaker Diarization
Sequence Utterance
Observation / Feature Embedding / d-vector
Label / Cluster ID Speaker

Arguments

In your main script, call this function to get the arguments:

model_args, training_args, inference_args = uisrnn.parse_arguments()

Model construction

All algorithms are implemented as the UISRNN class. First, construct a UISRNN object by:

model = uisrnn.UISRNN(args)

The definitions of the args are described in uisrnn/arguments.py. See model_parser.

Training

Next, train the model by calling the fit() function:

model.fit(train_sequences, train_cluster_ids, args)

The definitions of the args are described in uisrnn/arguments.py. See training_parser.

The fit() function accepts two types of input, as described below.

Input as list of sequences (recommended)

Here, train_sequences is a list of observation sequences. Each observation sequence is a 2-dim numpy array of type float.

  • The first dimension is the length of this sequence. And the length can vary from one sequence to another.
  • The second dimension is the size of each observation. This must be consistent among all sequences. For speaker diarization, the observation could be the d-vector embeddings.

train_cluster_ids is also a list, which has the same length as train_sequences. Each element of train_cluster_ids is a 1-dim list or numpy array of strings, containing the ground truth labels for the corresponding sequence in train_sequences. For speaker diarization, these labels are the speaker identifiers for each observation.

When calling fit() in this way, please be very careful with the argument --enforce_cluster_id_uniqueness.

For example, assume:

train_cluster_ids = [['a', 'b'], ['a', 'c']]

If the label 'a' from the two sequences refers to the same cluster across the entire dataset, then we should have enforce_cluster_id_uniqueness=False; otherwise, if 'a' is only a local indicator to distinguish from 'b' in the 1st sequence, and to distinguish from 'c' in the 2nd sequence, then we should have enforce_cluster_id_uniqueness=True.

Also, please note that, when calling fit() in this way, we are going to concatenate all sequences and all cluster IDs, and delegate to the next section below.

Input as single concatenated sequence

Here, train_sequences should be a single 2-dim numpy array of type float, for the concatenated observation sequences.

For example, if you have M training utterances, and each utterance is a sequence of L embeddings. Each embedding is a vector of D numbers. Then the shape of train_sequences is N * D, where N = M * L.

train_cluster_ids is a 1-dim list or numpy array of strings, of length N. It is the concatenated ground truth labels of all training data.

Since we are concatenating observation sequences, it is important to note that, ground truth labels in train_cluster_id across different sequences are supposed to be globally unique.

For example, if the set of labels in the first sequence is {'A', 'B', 'C'}, and the set of labels in the second sequence is {'B', 'C', 'D'}. Then before concatenation, we should rename them to something like {'1_A', '1_B', '1_C'} and {'2_B', '2_C', '2_D'}, unless 'B' and 'C' in the two sequences are meaningfully identical (in speaker diarization, this means they are the same speakers across utterances). This part will be automatically taken care of by the argument --enforce_cluster_id_uniqueness for the previous section.

The reason we concatenate all training sequences is that, we will be resampling and block-wise shuffling the training data as a data augmentation process, such that we result in a robust model even when there is insufficient number of training sequences.

Training on large datasets

For large datasets, the data usually could not be loaded into memory at once. In such cases, the fit() function needs to be called multiple times.

Here we provide a few guidelines as our suggestions:

  1. Do not feed different datasets into different calls of fit(). Instead, for each call of fit(), the input should cover sequences from different datasets.
  2. For each call to the fit() function, make the size of input roughly the same. And, don't make the input size too small.

Prediction

Once we are done with training, we can run the trained model to perform inference on new sequences by calling the predict() function:

predicted_cluster_ids = model.predict(test_sequences, args)

Here test_sequences should be a list of 2-dim numpy arrays of type float, corresponding to the observation sequences for testing.

The returned predicted_cluster_ids is a list of the same size as test_sequences. Each element of predicted_cluster_ids is a list of integers, with the same length as the corresponding test sequence.

You can also use a single test sequence for test_sequences. Then the returned predicted_cluster_ids will also be a single list of integers.

The definitions of the args are described in uisrnn/arguments.py. See inference_parser.

Citations

Our paper is cited as:

@inproceedings{zhang2019fully,
  title={Fully supervised speaker diarization},
  author={Zhang, Aonan and Wang, Quan and Zhu, Zhenyao and Paisley, John and Wang, Chong},
  booktitle={International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={6301--6305},
  year={2019},
  organization={IEEE}
}

References

Baseline diarization system

To learn more about our baseline diarization system based on unsupervised clustering algorithms, check out this site.

A Python re-implementation of the spectral clustering algorithm used in this paper is available here.

The ground truth labels for the NIST SRE 2000 dataset (Disk6 and Disk8) can be found here.

For more public resources on speaker diarization, check out awesome-diarization.

Speaker recognizer/encoder

To learn more about our speaker embedding system, check out this site.

We are aware of several third-party implementations of this work:

Please use your own judgement to decide whether you want to use these implementations.

We are NOT responsible for the correctness of any third-party implementations.

Variants

Here we list the repositories that are based on UIS-RNN, but integrated with other technologies or added some improvements.

Link Description
taylorlu/Speaker-Diarization GitHub stars Speaker diarization using UIS-RNN and GhostVLAD. An easier way to support openset speakers.
DonkeyShot21/uis-rnn-sml GitHub stars A variant of UIS-RNN, for the paper Supervised Online Diarization with Sample Mean Loss for Multi-Domain Data.
Owner
Google
Google ❤️ Open Source
Google
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
Rethinking the Truly Unsupervised Image-to-Image Translation - Official PyTorch Implementation (ICCV 2021)

Rethinking the Truly Unsupervised Image-to-Image Translation (ICCV 2021) Each image is generated with the source image in the left and the average sty

Clova AI Research 436 Dec 27, 2022
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023