Official implementation of Deep Burst Super-Resolution

Overview

Deep-Burst-SR

Official implementation of Deep Burst Super-Resolution

Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. CVPR 2021 [Arxiv]

Overview

While single-image super-resolution (SISR) has attracted substantial interest in recent years, the proposed approaches are limited to learning image priors in order to add high frequency details. In contrast, multi-frame superresolution (MFSR) offers the possibility of reconstructing rich details by combining signal information from multiple shifted images. This key advantage, along with the increasing popularity of burst photography, have made MFSR an important problem for real-world applications. We propose a novel architecture for the burst superresolution task. Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output. This is achieved by explicitly aligning deep embeddings of the input frames using pixel-wise optical flow. The information from all frames are then adaptively merged using an attention-based fusion module. In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset, consisting of smartphone bursts and high-resolution DSLR ground-truth.

dbsr overview figure [Comparison of our Deep Burst SR apporach with Single Image baseline for 4x super-resolution of RAW burst captured from Samsung Galaxy S8]

Table of Contents

Installation

Clone the Git repository.

git clone https://github.com/goutamgmb/deep-burst-sr.git

Install dependencies

Run the installation script to install all the dependencies. You need to provide the conda install path (e.g. ~/anaconda3) and the name for the created conda environment (here env-dbsr).

bash install.sh conda_install_path env-dbsr

This script will also download the default DBSR networks and create default environment settings.

Update environment settings

The environment setting file admin/local.py contains the paths for pre-trained networks, datasets etc. Update the paths in local.py according to your local environment.

Toolkit Overview

The toolkit consists of the following sub-modules.

  • admin: Includes functions for loading networks, tensorboard etc. and also contains environment settings.
  • data: Contains functions for generating synthetic bursts, camera pipeline, processing data (e.g. loading images, data augmentations).
  • data_specs: Information about train/val splits of different datasets.
  • dataset: Contains integration of datasets such as BurstSR, SyntheticBurst, ZurichRAW2RGB.
  • evaluation: Scripts to run and evaluate models on standard datasets.
  • external: External dependencies, e.g. PWCNet.
  • models: Contains different layers and network definitions.
  • util_scripts: Util scripts to e.g. download datasets.
  • utils: General utility functions for e.g. plotting, data type conversions, loading networks.

Datasets

The toolkit provides integration for following datasets which can be used to train/evaluate the models.

Zurich RAW to RGB Canon set

The RGB images from the training split of the Zurich RAW to RGB mapping dataset can be used to generate synthetic bursts for training using the SyntheticBurstProcessing class in data/processing.py.

Preparation: Download the Zurich RAW to RGB canon set from here and unpack the zip folder. Set the zurichraw2rgb_dir variable in admin/local.py to point to the unpacked dataset directory.

SyntheticBurst validation set

The pre-generated synthetic validation set used for evaluating the models. The dataset contains 300 synthetic bursts, each containing 14 RAW images. The synthetic bursts are generated from the RGB images from the test split of the Zurich RAW to RGB mapping dataset. The dataset can be loaded using SyntheticBurstVal class in dataset/synthetic_burst_val_set.py file.

Preparation: Downloaded the dataset here and unpack the zip file. Set the synburstval_dir variable in admin/local.py to point to the unpacked dataset directory.

BurstSR dataset (cropped)

The BurstSR dataset containing RAW bursts captured from Samsung Galaxy S8 and corresponding HR ground truths captured using a DSLR camera. This is the pre-processed version of the dataset that contains roughly aligned crops from the original images. The dataset can be loaded using BurstSRDataset class in dataset/burstsr_dataset.py file. Please check the DBSR paper for more details.

Preparation: The dataset has been split into 10 parts and can be downloaded and unpacked using the util_scripts/download_burstsr_dataset.py script. Set the burstsr_dir variable in admin/local.py to point to the unpacked BurstSR dataset directory.

BurstSR dataset (full)

The BurstSR dataset containing RAW bursts captured from Samsung Galaxy S8 and corresponding HR ground truths captured using a DSLR camera. This is the raw version of the dataset containing the full burst images in dng format.

Preparation: The dataset can be downloaded and unpacked using the util_scripts/download_raw_burstsr_data.py script.

Evaluation

You can run the trained model on RAW bursts to generate HR RGB images and compute the quality of predictions using the evaluation module.

Note: Please prepare the necessary datasets as explained in Datasets section before running the models.

Evaluate on SyntheticBurst validation set

You can evaluate the models on SyntheticBurst validation set using evaluation/synburst package. First create an experiment setting in evaluation/synburst/experiments containing the list of models to evaluate. You can start with the provided setting dbsr_default.py as a reference. Please refer to network_param.py for examples on how to specify a model for evaluation.

Save network predictions

You can save the predictions of a model on bursts from SyntheticBurst dataset by running

python evaluation/synburst/save_results.py EXPERIMENT_NAME

Here, EXPERIMENT_NAME is the name of the experiment setting you want to use (e.g. dbsr_default). The script will save the predictions of the model in the directory pointed by the save_data_path variable in admin/local.py.

Note The network predictions are saved in linear sensor color space (i.e. color space of input RAW burst), as 16 bit pngs.

Compute performance metrics

You can obtain the standard performance metrics (e.g. PSNR, MS-SSIM, LPIPS) using the compute_score.py script

python evaluation/synburst/compute_score.py EXPERIMENT_NAME

Here, EXPERIMENT_NAME is the name of the experiment setting you want to use (e.g. dbsr_default). The script will run the models to generate the predictions and compute the scores. In case you want to compute performance metrics for results saved using save_results.py, you can run compute_score.py with additonal --load_saved argument.

python evaluation/synburst/compute_score.py EXPERIMENT_NAME --load_saved

In this case, the script will load pre-saved predictions whenever available. If saved predictions are not available, it will run the model to first generate the predictions and then compute the scores.

Qualitative comparison

You can perform qualitative analysis of the model by visualizing the saved network predictions, along with ground truth, in sRGB format using the visualize_results.py script.

python evaluation/synburst/visualize_results.py EXPERIMENT_NAME

Here, EXPERIMENT_NAME is the name of the experiment setting containing the list of models you want to use (e.g. dbsr_default). The script will display the predictions of each model in sRGB format, along with the ground truth. You can toggle between images, zoom in on particular image regions using the UI. See visualize_results.py for details.

Note: You need to first save the network predictions using save_results.py script, before you can visualize them using visualize_results.py.

Evaluate on BurstSR validation set

You can evaluate the models on BurstSR validation set using evaluation/burstsr package. First create an experiment setting in evaluation/burstsr/experiments containing the list of models to evaluate. You can start with the provided setting dbsr_default.py as a reference. Please refer to network_param.py for examples on how to specify a model for evaluation.

Save network predictions

You can save the predictions of a model on bursts from BurstSR val dataset by running

python evaluation/burstsr/save_results.py EXPERIMENT_NAME

Here, EXPERIMENT_NAME is the name of the experiment setting you want to use (e.g. dbsr_default). The script will save the predictions of the model in the directory pointed by the save_data_path variable in admin/local.py.

Note The network predictions are saved in linear sensor color space (i.e. color space of input RAW burst), as 16 bit pngs.

Compute performance metrics

You can obtain the standard performance metrics (e.g. PSNR, MS-SSIM, LPIPS) after spatial and color alignment (see paper for details) using the compute_score.py script

python evaluation/burstsr/compute_score.py EXPERIMENT_NAME

Here, EXPERIMENT_NAME is the name of the experiment setting you want to use (e.g. dbsr_default). The script will run the models to generate the predictions and compute the scores. In case you want to compute performance metrics for results saved using save_results.py, you can run compute_score.py with additonal --load_saved argument.

python evaluation/burstsr/compute_score.py EXPERIMENT_NAME --load_saved

In this case, the script will load pre-saved predictions whenever available. If saved predictions are not available, it will run the model to first generate the predictions and then compute the scores.

Qualitative comparison

You can perform qualitative analysis of the model by visualizing the saved network predictions, along with ground truth, in sRGB format using the visualize_results.py script.

python evaluation/burstsr/visualize_results.py EXPERIMENT_NAME

Here, EXPERIMENT_NAME is the name of the experiment setting containing the list of models you want to use (e.g. dbsr_default). The script will display the predictions of each model in sRGB format, along with the ground truth. You can toggle between images, zoom in on particular image regions using the UI. See visualize_results.py for details.

Note: You need to first save the network predictions using save_results.py script, before you can visualize them using visualize_results.py.

Model Zoo

Here, we provide pre-trained network weights and report their performance.

Note: The models have been retrained using the cleaned up code, and thus can have small performance differences compared to the models used for the paper.

SyntheticBurst models

The models are evaluated using all 14 burst images.

Model PSNR MS-SSIM LPIPS Links Notes
CVPR2021 39.09 0.945 0.084 - CVPR2021 results
dbsr_synthetic_default 39.17 0.946 0.081 model Official retrained model
BurstSR models

The models are evaluated using all 14 burst images. The metrics are computed after spatial and color alignment, as described in DBSR paper.

Model PSNR MS-SSIM LPIPS Links Notes
CVPR2021 47.76 0.984 0.030 - CVPR2021 results
dbsr_burstsr_default 47.70 0.984 0.029 model Official retrained model

Training

We are still waiting for approval from our project sponsors to release the training codes. Hopefully we can soon release it. Meanwhile, please free to contact us in case of any questions regarding training.

Acknowledgement

The toolkit uses code from the following projects:

Owner
Goutam Bhat
Goutam Bhat
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022