UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

Overview

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

This repository contains UA-GEC data and an accompanying Python library.

Data

All corpus data and metadata stay under the ./data. It has two subfolders for train and test splits

Each split (train and test) has further subfolders for different data representations:

./data/{train,test}/annotated stores documents in the annotated format

./data/{train,test}/source and ./data/{train,test}/target store the original and the corrected versions of documents. Text files in these directories are plain text with no annotation markup. These files were produced from the annotated data and are, in some way, redundant. We keep them because this format is convenient in some use cases.

Metadata

./data/metadata.csv stores per-document metadata. It's a CSV file with the following fields:

  • id (str): document identifier.
  • author_id (str): document author identifier.
  • is_native (int): 1 if the author is native-speaker, 0 otherwise
  • region (str): the author's region of birth. A special value "Інше" is used both for authors who were born outside Ukraine and authors who preferred not to specify their region.
  • gender (str): could be "Жіноча" (female), "Чоловіча" (male), or "Інша" (other).
  • occupation (str): one of "Технічна", "Гуманітарна", "Природнича", "Інша"
  • submission_type (str): one of "essay", "translation", or "text_donation"
  • source_language (str): for submissions of the "translation" type, this field indicates the source language of the translated text. Possible values are "de", "en", "fr", "ru", and "pl".
  • annotator_id (int): ID of the annotator who corrected the document.
  • partition (str): one of "test" or "train"
  • is_sensitive (int): 1 if the document contains profanity or offensive language

Annotation format

Annotated files are text files that use the following in-text annotation format: {error=>edit:::error_type=Tag}, where error and edit stand for the text item before and after correction respectively, and Tag denotes an error category (Grammar, Spelling, Punctuation, or Fluency).

Example of an annotated sentence:

    I {likes=>like:::error_type=Grammar} turtles.

An accompanying Python package, ua_gec, provides many tools for working with annotated texts. See its documentation for details.

Train-test split

We expect users of the corpus to train and tune their models on the train split only. Feel free to further split it into train-dev (or use cross-validation).

Please use the test split only for reporting scores of your final model. In particular, never optimize on the test set. Do not tune hyperparameters on it. Do not use it for model selection in any way.

Next section lists the per-split statistics.

Statistics

UA-GEC contains:

Split Documents Sentences Tokens Authors
train 851 18,225 285,247 416
test 160 2,490 43,432 76
TOTAL 1,011 20,715 328,779 492

See stats.txt for detailed statistics generated by the following command (ua-gec must be installed first):

$ make stats

Python library

Alternatively to operating on data files directly, you may use a Python package called ua_gec. This package includes the data and has classes to iterate over documents, read metadata, work with annotations, etc.

Getting started

The package can be easily installed by pip:

    $ pip install ua_gec==1.1

Alternatively, you can install it from the source code:

    $ cd python
    $ python setup.py develop

Iterating through corpus

Once installed, you may get annotated documents from the Python code:

    
    >>> from ua_gec import Corpus
    >>> corpus = Corpus(partition="train")
    >>> for doc in corpus:
    ...     print(doc.source)         # "I likes it."
    ...     print(doc.target)         # "I like it."
    ...     print(doc.annotated)      # like} it.")
    ...     print(doc.meta.region)    # "Київська"

Note that the doc.annotated property is of type AnnotatedText. This class is described in the next section

Working with annotations

ua_gec.AnnotatedText is a class that provides tools for processing annotated texts. It can iterate over annotations, get annotation error type, remove some of the annotations, and more.

While we're working on a detailed documentation, here is an example to get you started. It will remove all Fluency annotations from a text:

    >>> from ua_gec import AnnotatedText
    >>> text = AnnotatedText("I {likes=>like:::error_type=Grammar} it.")
    >>> for ann in text.iter_annotations():
    ...     print(ann.source_text)       # likes
    ...     print(ann.top_suggestion)    # like
    ...     print(ann.meta)              # {'error_type': 'Grammar'}
    ...     if ann.meta["error_type"] == "Fluency":
    ...         text.remove(ann)         # or `text.apply(ann)`

Contributing

  • The data collection is an ongoing activity. You can always contribute your Ukrainian writings or complete one of the writing tasks at https://ua-gec-dataset.grammarly.ai/

  • Code improvements and document are welcomed. Please submit a pull request.

Contacts

Owner
Grammarly
Millions of users rely on Grammarly's AI-powered products to make their messages, documents, and social media posts clear, mistake-free, and impactful.
Grammarly
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
Comprehensive-E2E-TTS - PyTorch Implementation

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultima

Keon Lee 114 Nov 13, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023