Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Overview

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision

https://arxiv.org/abs/2003.00393

Abstract

Active learning (AL) aims to minimize labeling efforts for data-demanding deep neural networks (DNNs) by selecting the most representative data points for annotation. However, currently used methods are ill-equipped to deal with biased data. The main motivation of this paper is to consider a realistic setting for pool-based semi-supervised AL, where the unlabeled collection of train data is biased. We theoretically derive an optimal acquisition function for AL in this setting. It can be formulated as distribution shift minimization between unlabeled train data and weakly-labeled validation dataset. To implement such acquisition function, we propose a low-complexity method for feature density matching using Fisher kernel (FK) self-supervision as well as several novel pseudo-label estimators. Our FK-based method outperforms state-of-the-art methods on MNIST, SVHN, and ImageNet classification while requiring only 1/10th of processing. The conducted experiments show at least 40% drop in labeling efforts for the biased class-imbalanced data compared to existing methods.

BibTex Citation

If you like our paper or code, please cite its CVPR2020 preprint using the following BibTex:

@article{gudovskiy2020al,
  title={Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision},
  author={Gudovskiy, Denis and Hodgkinson, Alec and Yamaguchi, Takuya and Tsukizawa, Sotaro},
  journal={arXiv:2003.00393},
  year={2020}
}

Installation

  • Install v1.1+ PyTorch by selecting your environment on the website and running the appropriate command.
  • Clone this repository: code has been tested on Python 3+.
  • Install DALI for ImageNet only: tested on v0.11.0.
  • Optionally install Kornia for MC-based pseudo-label estimation metrics. However, due to strict Python 3.6+ requirement for this lib, by default, we provide our simple rotation function. Use Kornia to experiment with other sampling strategies.

Datasets

Data and temporary files like descriptors, checkpoints and index files are saved into ./local_data/{dataset} folder. For example, MNIST scripts are located in ./mnist and its data is saved into ./local_data/MNIST folder, correspondingly. In order to get statistically significant results, we execute multiple runs of the same configuration with randomized weights and training dataset splits and save results to ./local_data/{dataset}/runN folders. We suggest to check that you have enough space for large-scale datasets.

MNIST, SVHN

Datasets will be automatically downloaded and converted to PyTorch after the first run of AL.

ImageNet

Due to large size, ImageNet has to be manually downloaded and preprocessed using these scripts.

Code Organization

  • Scripts are located in ./{dataset} folder.
  • Main parts of the framework are contained in only few files: "unsup.py", "gen_descr.py", "main_descr.py" as well as execution script "run.py".
  • Dataset loaders are located in ./{dataset}/custom_datasets and DNN models in ./{dataset}/custom_models
  • The "unsup.py" is a script to train initial model by unsupervised pretraining using rotation method and to produce all-random weights initial model.
  • The "gen_descr.py" generates descriptor database files in ./local_data/{dataset}/runN/descr.
  • The "main_descr.py" performs AL feature matching, adds new data to training dataset and retrains model with new augmented data. Its checkpoints are saved into ./local_data/{dataset}/runN/checkpoint.
  • The run.py" can read these checkpoint files and perform AL iteration with retraining.
  • The run_plot.py" generates performance curves that can be found in the paper.
  • To make confusion matrices and t-SNE plots, use extra "visualize_tsne.py" script for MNIST only.
  • VAAL code can be found in ./vaal folder, which is adopted version of official repo.

Running Active Learning Experiments

  • Install minimal required packages from requirements.txt.
  • The command interface for all methods is combined into "run.py" script. It can run multiple algorithms and data configurations.
  • The script parameters may differ depending on the dataset and, hence, it is better to use "python3 run.py --help" command.
  • First, you have to set configuration in cfg = list() according to its format and execute "run.py" script with "--initial" flag to generate initial random and unsupervised pretrained models.
  • Second, the same script should be run without "--initial".
  • Third, after all AL steps are executed, "run_plot.py" should be used to reproduce performance curves.
  • All these steps require basic understanding of the AL terminology.
  • Use the default configurations to reproduce paper results.
  • To speed up or parallelize multiple runs, use --run-start, --run-stop parameters to limit number of runs saved in ./local_data/{dataset}/runN folders. The default setting is 10 runs for MNIST, 5 for SVHN and 1 for ImageNet.
pip3 install -U -r requirements.txt
python3 run.py --gpu 0 --initial # generate initial models
python3 run.py --gpu 0 --unsupervised 0 # AL with the initial all-random parameters model
python3 run.py --gpu 0 --unsupervised 1 # AL with the initial model pretrained using unsupervised rotation method

Reference Results

MNIST

MNIST LeNet test accuracy: (a) no class imbalance, (b) 100x class imbalance, and (c) ablation study of pseudo-labeling and unsupervised pretraining (100x class imbalance). Our method decreases labeling by 40% compared to prior works for biased data.

SVHN and ImageNet

SVHN ResNet-10 test (top) and ImageNet ResNet-18 val (bottom) accuracy: (a,c) no class imbalance and (b,d) with 100x class imbalance.

MNIST Visualizations

Confusion matrix (top) and t-SNE (bottom) of MNIST test data at AL iteration b=3 with 100x class imbalance for: (a) varR with E=1, K=128, (b) R_{z,g}, S=hat{p}(y,z), L=80 (ours), and (c) R_{z,g}, S=y, L=80. Dots and balls represent correspondingly correctly and incorrectly classified images for t-SNE visualizations. The underrepresented classes {5,8,9} have on average 36% accuracy for prior work (a), while our method (b) increases their accuracy to 75%. The ablation configuration (c) shows 89% theoretical limit of our method.

Owner
Denis
Machine and Deep Learning Researcher
Denis
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023