Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

Overview

README

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques. A dataset containing signals collected from 60 LoRa devices is also provided. The detailed collection settings for the different sub-datasets can be found in Section Dataset Introduction. The section of Code Example introduces the usage of some important functions, for more detailed usage please read the code comments carefully.

Citation

If the part of the dataset/codes contributes to your project, please cite:

[1] G. Shen, J. Zhang, A. Marshall, and J. Cavallaro.   “Towards Scalable and Channel-Robust Radio Frequency 
Fingerprint Identification for LoRa,” IEEE Trans. Inf. Forensics Security, 2022.
@article{shen2021towards,
  title={Towards Scalable and Channel-Robust Radio Frequency Fingerprint Identification for LoRa},
  author={Shen, Guanxiong and Zhang, Junqing and Marshall, Alan and Cavallaro, Joseph},
  journal={arXiv preprint arXiv:2107.02867},
  year={2021}
}

Dataset Introduction

Experimental Devices

There are 60 commercial-off-the-shelf LoRa devices (LoPy4, mbed SX1261 shields, FiPy, Dragino SX1276 shields) included in the experiments. The table below provides more details of them.

Device index Model Chipset
1 - 45 Pycom LoPy4 SX1276
46 - 50 mbed SX1261 shield SX1261
51 - 55 Pycom FiPy SX1272
56 - 60 Dragino SX1276 shield SX1276

All the LoRa packets are captured by a USRP N210 software-defined radio (SDR).

Dataset Structure

The dataset consists of 26 sub-datasets, each of which is an HDF5 file. Each HDF5 file contains a number of LoRa signals (IQ samples of preamble part) and corresponding device labels. As HDF5 does not support complex numbers, we concatenate the signal I-brach (real part) and Q-branch (imaginary part) and then save it. Figure below shows the structure of the raw HDF5 dataset.

Training Datasets

The following table summarizes the basic information of each training dataset. All the training datasets were collected in a residential room with a line of sight (LOS) between the transmitter and receiver.

Training dataset path Devices Number of packets per device Augmentation
Dataset/Train/dataset_training_aug.h5 1 - 30 1,000 Yes, both multipath & Doppler
Dataset/Train/dataset_training_aug_0hz.h5 1 - 30 1,000 Yes, only multipath ($f_d$ = 0 Hz)
Dataset/Train/dataset_training_no_aug.h5 1 - 30 500 No

Test/Enrollment Datasets

The test/enrollment datasets were collected in a residential room, an office building and a meeting room. The floor plan is provided in the following figure:

The following table summarizes the basic information of each test/enrollment dataset.

Test dataset path Devices Number of packets per device Collection env.
Dataset/Test/dataset_seen_devices.h5 1 - 30 400 Residential room, LOS, stationary
Dataset/Test/dataset_rogue.h5 41 - 45 200 Residential room, LOS, stationary
Dataset/Test/dataset_residential.h5 31 - 40 400 Residential room, LOS, stationary
Dataset/Test/dataset_other_device_type.h5 46 - 60 400 Residential room, LOS, stationary
Dataset/Test/channel_problem/A.h5 31 - 40 200 Location A, LOS, stationary
Dataset/Test/channel_problem/B.h5 31 - 40 200 Location B, LOS, stationary
Dataset/Test/channel_problem/C.h5 31 - 40 200 Location C, LOS, stationary
Dataset/Test/channel_problem/D.h5 31 - 40 200 Location D, NLOS, stationary
Dataset/Test/channel_problem/E.h5 31 - 40 200 Location E, NLOS, stationary
Dataset/Test/channel_problem/F.h5 31 - 40 200 Location F, NLOS, stationary
Dataset/Test/channel_problem/B_walk.h5 31 - 40 200 Location B, LOS, object moving
Dataset/Test/channel_problem/F_walk.h5 31 - 40 200 Location F, NLOS, object moving
Dataset/Test/channel_problem/moving_office.h5 31 - 40 200 LOS, mobile in the office
Dataset/Test/channel_problem/moving_meeting_room.h5 31 - 40 200 NLOS, mobile in the meeting room
Dataset/Test/channel_problem/B_antenna.h5 31 - 40 200 Location B, LOS, stationary, parallel antenna
Dataset/Test/channel_problem/F_antenna.h5 31 - 40 200 Location F, NLOS, stationary, parallel antenna

Code Example

1. Before Start

a) Install Required Packages

Please find the 'requirement.txt' file to install the required packages.

b) Download Dataset

Please downlaod the dataset and put it in the project folder. The download link is https://ieee-dataport.org/open-access/lorarffidataset.

c) Operating System

This project is built entirely on the Windows operating system. There may be unexpected issues on other operating systems.

2. Quick Start

After installing packages of correct versions and downloading the datasets, you can directly run the 'main.py' file for RFF extractor training/rogue device detection/classification tasks. You can change the variable 'run_for' in line 364 to specify which task to perform. For example, the program will train an RFF extractor and save it if you set the 'run_for' as 'Train'.

3. Load Datasets

It is recommended to use our provided 'LoadDataset' class function to load the raw HDF5 files. You need to specify the dataset path, device range, and packet range before running it. Below is an example of loading an HDF5 file:

import numpy as np
from dataset_preparation import LoadDataset

LoadDatasetObj = LoadDataset()
data, label = LoadDatasetObj.load_iq_samples(file_path = './dataset/Train/dataset_training_aug.h5', 
                                             dev_range = np.arange(30,40, dtype = int), 
                                             pkt_range= np.arange(0,100, dtype = int))

This example will extract ($10\times100=1000$) LoRa signals in total. More specifically, it will extract 100 packets from each device in range. The function 'load_iq_samples' returns two arrays, data and label. The data is a complex128 array of size (1000,8192), and label is an int32 array of size (1000,1). The figure below illustrates the structures of the two arrays.

Note that the loaded labels start from 0 but not 1 to adapt to deep learning. In other words, device 1 is labelled 0 and device 2 is labelled 1 and so forth.

4. Generate Channel Independent Spectrograms

The channel independent spectrogram helps mitigate the channel effects in the received signal and make LoRa-RFFI systems more robust to channel variations. We provide functions to convert an array of IQ samples to channel independent spectrograms. The following code block gives an example:

from dataset_preparation import ChannelIndSpectrogram

ChannelIndSpectrogramObj = ChannelIndSpectrogram()
# The input 'data' is the loaded IQ samples in the last example.
ch_ind_spec = ChannelIndSpectrogramObj.channel_ind_spectrogram(data)

The returned 'ch_ind_spec' is an array of size (1000,102,62,1). Note that the size of the array is affected by the STFT parameters, which can be changed in code. Please refer to our paper or code comments to find the detailed derivation of channel independent spectrograms.

5. Train an RFF Extractor

The function 'train_feature_extractor()' can train an RFF extractor using triplet loss.

import numpy as np
from deep_learning_models import TripletNet, identity_loss
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.optimizers import RMSprop

feature_extractor = train_feature_extractor()

You can also specify the training dataset path, training device range, training packets range and SNR range during augmentation. Otherwise, the default values will be used. Following is an example:

feature_extractor = train_feature_extractor(file_path = './dataset/Train/dataset_training_aug.h5', 
                                            dev_range = np.arange(0,10, dtype = int), 
                                            pkt_range = np.arange(0,1000, dtype = int), 
                                            snr_range = np.arange(20,80)):

6. Rogue Device Detection

The function 'test_rogue_device_detection()' performs the rogue device detection task. You MUST specify the RFF extractor path before running the function. See the example below:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc

fpr, tpr, roc_auc, eer = test_rogue_device_detection('./models/Extractor_1.h5')

This function returns false posive rate (FPR), true positive rate (TPR), area under the curve (AUC) and equal error rate (EER). These are all important evaluation metrics in rogue device detection task. Please refer to our paper for their definitions.

The following lines of code plot the ROC curve using the returned results:

import matplotlib.pyplot as plt

# Plot the ROC curves.
plt.figure(figsize=(4.8, 2.8))
plt.xlim(-0.01, 1.02)
plt.ylim(-0.01, 1.02)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Extractor 1, AUC = ' 
         + str(round(roc_auc,3)) + ', EER = ' + str(round(eer,3)), C='r')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc=4)
# plt.savefig('roc_curve.pdf',bbox_inches='tight')
plt.show()    

7. Classification

The function 'test_classification()' performs the classification task. You MUST specify the paths of enrollment dataset, test dataset and RFF extractor before running the function. Here is a simple example:

from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

pred_label, true_label, acc = test_classification(file_path_enrol = 
                                                  './dataset/Test/dataset_residential.h5',
                                                  file_path_clf = 
                                                  './dataset/Test/channel_problem/A.h5',
                                                  feature_extractor_name = 
                                                  './models/Extractor_1.h5')

This example returns predicted labels, true labels and the overall classification accuracy. We can further plot a confusion matrix to see fine-grained classification results:

import matplotlib.pyplot as plt
import seaborn as sns

# Plot the confusion matrix.
conf_mat = confusion_matrix(true_label, pred_label)
classes = test_dev_range + 1 # xticklabels

plt.figure()
sns.heatmap(conf_mat, annot=True, 
            fmt = 'd', cmap='Blues',
            cbar = False,
            xticklabels=classes, 
            yticklabels=classes)
plt.xlabel('Predicted label', fontsize = 20)
plt.ylabel('True label', fontsize = 20)

License

The dataset and code is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Contact

Please contact the following email addresses if you have any questions:
[email protected]
[email protected]

Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022