The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

Related tags

Deep LearningFOREC
Overview

FOREC: A Cross-Market Recommendation System

This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recommendation". Please consider citing our paper if you find the code and XMarket dataset useful in your research.

The general schema of our FOREC recommendation system is shown below. For a pair of markets, the middle part shows the market-agnostic model that we pre-train, and then fork and fine-tune for each market shown in the left and right. Note that FOREC is capable of working with any desired number of target markets. However, for simplicity, we only experiment with pairs of markets for the experiments. For further details, please refer to our paper.

Requirements:

We use conda for our experimentations. Please refer to the requirements.txt for the list of libraries we use for our implementation. After setting up your environment, you can simply run this command pip install -r requirements.txt.

DATA

The DATA folder in this repository contains the cleaned and proccessed data that we use for our experiments. Please note that we made a few changes with releasing the data, and you might see slightly different numbers compared to the reported numbers in the paper.

If you wish to repeat the process on other categories of data or change the data preprocessing steps, prepare_data.ipynb provides the code for downloading and preprocessing data. Please refer to that jupyter notebook for further details. Don't hesitate to contact us in case of any problem.

Train the baseline and FOREC models (with Evaluations):

We provide three training scripts, for training baselines (single market, GMF, MLP, NMF++ and MAML) as well as FOREC model. Here are the list of models that for training and evaluating with the scripts provided:

  • train_base.py for GMF, MLP, NMF and their ++ versions as cross-market models
  • train_maml.py for training our MAML baseline
  • train_forec.py for trainig our proposed FOREC model

Note that since MAML and FOREC works on NMF architecture, you need to have same setting NMF++ model trained before proceeding with the MAML and FOREC training scripts. In addition, NMF requires that GMF and MLP models are trained, as it combines these two models into the architecture with some additional layers. See the middle part of the FOREC schema above.

In order to faciliate this, we provide a jupyter notebook (train_all.ipynb) that generates correct commands for all these trainings on any desired target market and augmenting source market pairs. Please follow the notebook for the training. For our trainings, we use slurm job management system on our server. However, you can still use/change the bash script generating part in the notebook to fit your own setup. These scripts are written into scripts folder created by the notebook. The logging of the training is alos in this directory under log sub-directory.

Note that for each of these, the train script evaluates on validation and test data (leave-one-out procedure for splitting---see data.py). The detailed evaluation results are dumped into EVAL folder as json files. Our trained checkpoints and an aggregator of evaluation json files will be provided shortly.

Citation

If you use this dataset, please refer to our CIKM’21 paper:

@inproceedings{bonab2021crossmarket,
    author = {Bonab, Hamed and Aliannejadi, Mohammad and Vardasbi, Ali and Kanoulas, Evangelos and Allan, James},
    booktitle = {Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
    publisher = {ACM},
    title = {Cross-Market Product Recommendation},
    year = {2021}}

Please feel free to either open an issue or contacting me at bonab [AT] cs.umass.edu

Owner
Hamed Bonab
PhD Candidate at UMass Amherst
Hamed Bonab
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022