TVNet: Temporal Voting Network for Action Localization

Related tags

Deep LearningTVNet
Overview

TVNet: Temporal Voting Network for Action Localization

This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization".

Paper Introduction

Temporal action localization is a vital task in video understranding. In this paper, we propose a Temporal Voting Network (TVNet) for action localization in untrimmed videos. This incorporates a novel Voting Evidence Module to locate temporal boundaries, more accurately, where temporal contextual evidence is accumulated to predict frame-level probabilities of start and end action boundaries.

Dependencies

  • Python == 2.7
  • Tensorflow == 1.9.0
  • CUDA==10.1.105
  • GCC >= 5.4

Note that the PEM code from BMN is implemented in Pytorch==1.1.0 or 1.3.0

Data Preparation

Datasets

Our experiments is based on ActivityNet 1.3 and THUMOS14 datasets.

Feature for THUMOS14

You can download the feature on THUMOS14 at here GooogleDrive.

Place it into a folder named thumos_features inside ./data.

You also need to download the feature for PEM (from BMN) at GooogleDrive. Please put it into a folder named Thumos_feature_hdf5 inside ./TVNet-THUMOS14/data/thumos_features.

If everything goes well, you can get the folder architecture of ./TVNet-THUMOS14/data like this:

data                       
└── thumos_features                    
		├── Thumos_feature_dim_400              
		├── Thumos_feature_hdf5               
		├── features_train.npy 
		└── features_test.npy

Feature for ActivityNet 1.3

You can download the feature on ActivityNet 1.3 at here GoogleCloud. Please put csv_mean_100 directory into ./TVNet-ANET/data/activitynet_feature_cuhk/.

If everything goes well, you can get the folder architecture of ./TVNet-ANET/data like this:

data                        
└── activitynet_feature_cuhk                    
		    └── csv_mean_100

Run all steps

Run all steps on THUMOS14

cd TVNet-THUMOS14

Run the following script with all steps on THUMOS14:

bash do_all.sh

Note: If you use BlueCrystal 4, you can directly run the following script without any dependencies setup.

bash do_all_BC4.sh

Run all steps on ActivityNet 1.3

cd TVNet-ANET
bash do_all.sh  or  bash do_all_BC4.sh

Run steps separately

Take TVNet-THUMOS14 as an example:

cd TVNet-THUMOS14

1. Temporal evaluation module

python TEM_train.py
python TEM_test.py

2. Creat training data for voting evidence module

python VEM_create_windows.py --window_length L --window_stride S

L is the window length and S is the sliding stride. We generate training windows for length 10 with stride 5, and length 5 with stride 2.

3. Voting evidence module

python VEM_train.py --voting_type TYPE --window_length L --window_stride S
python VEM_test.py --voting_type TYPE --window_length L --window_stride S

TYPE should be start or end. We train and test models with window length 10 (stride 5) and window length 5 (stride 2) for start and end separately.

4. Proposal evaluation module from BMN

python PEM_train.py

5. Proposal generation

python proposal_generation.py

6. Post processing and detection

python post_postprocess.py

Results

THUMOS14

tIoU [email protected]
0.3 0.5724681814413137
0.4 0.5060844218403346
0.5 0.430414918823808
0.6 0.3297164845828022
0.7 0.202971546242546

ActivityNet 1.3

tIoU [email protected]
Average 0.3460396513933088
0.5 0.5135151163296395
0.75 0.34955648726767025
0.95 0.10121803584836778

Reference

This implementation borrows from:

BSN: BSN-Boundary-Sensitive-Network

TEM_train/test.py -- for the TEM module we used in our paper
load_dataset.py -- borrow the part which load data for TEM

BMN: BMN-Boundary-Matching-Network

PEM_train.py -- for the PEM module we used in our paper

G-TAD: Sub-Graph Localization for Temporal Action Detection

post_postprocess.py -- for the multicore process to generate detection

Our main contribution is in:

VEM_create_windows.py -- generate training annotations for Voting Evidence Module (VEM)

VEM_train.py -- train Voting Evidence Module (VEM)

VEM_test.py -- test Voting Evidence Module (VEM)
Owner
hywang
hywang
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022