Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Related tags

Deep LearningBERT_FP
Overview

Fine-grained Post-training for Multi-turn Response Selection

PWC

Implements the model described in the following paper Fine-grained Post-training for Improving Retrieval-based Dialogue Systems in NAACL-2021.

@inproceedings{han-etal-2021-fine,
title = "Fine-grained Post-training for Improving Retrieval-based Dialogue Systems",
author = "Han, Janghoon  and Hong, Taesuk  and Kim, Byoungjae  and Ko, Youngjoong  and Seo, Jungyun",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.naacl-main.122", pages = "1549--1558",
}

This code is reimplemented as a fork of huggingface/transformers.

alt text

Setup and Dependencies

This code is implemented using PyTorch v1.8.0, and provides out of the box support with CUDA 11.2 Anaconda is the recommended to set up this codebase.

# https://pytorch.org
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install -r requirements.txt

Preparing Data and Checkpoints

Post-trained and fine-tuned Checkpoints

We provide following post-trained and fine-tuned checkpoints.

Data pkl for Fine-tuning (Response Selection)

We used the following data for post-training and fine-tuning

Original version for each dataset is availble in Ubuntu Corpus V1, Douban Corpus, and E-Commerce Corpus, respectively.

Fine-grained Post-Training

Making Data for post-training and fine-tuning
Data_processing.py

Post-training Examples

(Ubuntu Corpus V1, Douban Corpus, E-commerce Corpus)
python -u FPT/ubuntu_final.py --num_train_epochs 25
python -u FPT/douban_final.py --num_train_epochs 27
python -u FPT/e_commmerce_final.py --num_train_epochs 34

Fine-tuning Examples

(Ubuntu Corpus V1, Douban Corpus, E-commerce Corpus)
Taining
To train the model, set `--is_training`
python -u Fine-Tuning/Response_selection.py --task ubuntu --is_training
python -u Fine-Tuning/Response_selection.py --task douban --is_training
python -u Fine-Tuning/Response_selection.py --task e_commerce --is_training
Testing
python -u Fine-Tuning/Response_selection.py --task ubuntu
python -u Fine-Tuning/Response_selection.py --task douban 
python -u Fine-Tuning/Response_selection.py --task e_commerce

Training Response Selection Models

Model Arguments

Fine-grained post-training
task_name data_dir checkpoint_path
ubuntu ubuntu_data/ubuntu_post_train.pkl FPT/PT_checkpoint/ubuntu/bert.pt
douban douban_data/douban_post_train.pkl FPT/PT_checkpoint/douban/bert.pt
e-commerce e_commerce_data/e_commerce_post_train.pkl FPT/PT_checkpoint/e_commerce/bert.pt
Fine-tuning
task_name data_dir checkpoint_path
ubuntu ubuntu_data/ubuntu_dataset_1M.pkl Fine-Tuning/FT_checkpoint/ubuntu.0.pt
douban douban_data/douban_dataset_1M.pkl Fine-Tuning/FT_checkpoint/douban.0.pt
e-commerce e_commerce_data/e_commerce_dataset_1M.pkl Fine-Tuning/FT_checkpoint/e_commerce.0.pt

Performance

We provide model checkpoints of BERT_FP, which obtained new state-of-the-art, for each dataset.

Ubuntu [email protected] [email protected] [email protected]
[BERT_FP] 0.911 0.962 0.994
Douban MAP MRR [email protected] [email protected] [email protected] [email protected]
[BERT_FP] 0.644 0.680 0.512 0.324 0.542 0.870
E-Commerce [email protected] [email protected] [email protected]
[BERT_FP] 0.870 0.956 0.993
Owner
Janghoon Han
NLP Researcher
Janghoon Han
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022