YolactEdge: Real-time Instance Segmentation on the Edge

Overview

YolactEdge: Real-time Instance Segmentation on the Edge

██╗   ██╗ ██████╗ ██╗      █████╗  ██████╗████████╗    ███████╗██████╗  ██████╗ ███████╗
╚██╗ ██╔╝██╔═══██╗██║     ██╔══██╗██╔════╝╚══██╔══╝    ██╔════╝██╔══██╗██╔════╝ ██╔════╝
 ╚████╔╝ ██║   ██║██║     ███████║██║        ██║       █████╗  ██║  ██║██║  ███╗█████╗  
  ╚██╔╝  ██║   ██║██║     ██╔══██║██║        ██║       ██╔══╝  ██║  ██║██║   ██║██╔══╝  
   ██║   ╚██████╔╝███████╗██║  ██║╚██████╗   ██║       ███████╗██████╔╝╚██████╔╝███████╗
   ╚═╝    ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═════╝   ╚═╝       ╚══════╝╚═════╝  ╚═════╝ ╚══════╝

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7 FPS on an RTX 2080 Ti) with a ResNet-101 backbone on 550x550 resolution images. This is the code for our paper.

For a real-time demo and more samples, check out our demo video.

example-gif-1

example-gif-2

example-gif-3

Installation

See INSTALL.md.

Model Zoo

We provide baseline YOLACT and YolactEdge models trained on COCO and YouTube VIS (our sub-training split, with COCO joint training).

To evalute the model, put the corresponding weights file in the ./weights directory and run one of the following commands.

YouTube VIS models:

Method Backbone  mAP AGX-Xavier FPS RTX 2080 Ti FPS weights
YOLACT R-50-FPN 44.7 8.5 59.8 download | mirror
YolactEdge
(w/o TRT)
R-50-FPN 44.2 10.5 67.0 download | mirror
YolactEdge R-50-FPN 44.0 32.4 177.6 download | mirror
YOLACT R-101-FPN 47.3 5.9 42.6 download | mirror
YolactEdge
(w/o TRT)
R-101-FPN 46.9 9.5 61.2 download | mirror
YolactEdge R-101-FPN 46.2 30.8 172.7 download | mirror

COCO models:

Method    Backbone     mAP Titan Xp FPS AGX-Xavier FPS RTX 2080 Ti FPS weights
YOLACT MobileNet-V2 22.1 - 15.0 35.7 download | mirror
YolactEdge MobileNet-V2 20.8 - 35.7 161.4 download | mirror
YOLACT R-50-FPN 28.2 42.5 9.1 45.0 download | mirror
YolactEdge R-50-FPN 27.0 - 30.7 140.3 download | mirror
YOLACT R-101-FPN 29.8 33.5 6.6 36.5 download | mirror
YolactEdge R-101-FPN 29.5 - 27.3 124.8 download | mirror

Getting Started

Follow the installation instructions to set up required environment for running YolactEdge.

See instructions to evaluate and train with YolactEdge.

Colab Notebook

Try out our Colab Notebook with a live demo to learn about basic usage.

If you are interested in evaluating YolactEdge with TensorRT, we provide another Colab Notebook with TensorRT environment configuration on Colab.

Evaluation

Quantitative Results

# Convert each component of the trained model to TensorRT using the optimal settings and evaluate on the YouTube VIS validation set (our split).
python3 eval.py --trained_model=./weights/yolact_edge_vid_847_50000.pth

# Evaluate on the entire COCO validation set.
python3 eval.py --trained_model=./weights/yolact_edge_54_800000.pth

# Output a COCO JSON file for the COCO test-dev. The command will create './results/bbox_detections.json' and './results/mask_detections.json' for detection and instance segmentation respectively. These files can then be submitted to the website for evaluation.
python3 eval.py --trained_model=./weights/yolact_edge_54_800000.pth --dataset=coco2017_testdev_dataset --output_coco_json

Qualitative Results

# Display qualitative results on COCO. From here on I'll use a confidence threshold of 0.3.
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --score_threshold=0.3 --top_k=100 --display

Benchmarking

# Benchmark the trained model on the COCO validation set.
# Run just the raw model on the first 1k images of the validation set
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --benchmark --max_images=1000

Notes

Inference using models trained with YOLACT

If you have a pre-trained model with YOLACT, and you want to take advantage of either TensorRT feature of YolactEdge, simply specify the --config=yolact_edge_config in command line options, and the code will automatically detect and convert the model weights to be compatible.

python3 eval.py --config=yolact_edge_config --trained_model=./weights/yolact_base_54_800000.pth

Inference without Calibration

If you want to run inference command without calibration, you can either run with FP16-only TensorRT optimization, or without TensorRT optimization with corresponding configs. Refer to data/config.py for examples of such configs.

# Evaluate YolactEdge with FP16-only TensorRT optimization with '--use_fp16_tensorrt' option (replace all INT8 optimization with FP16).
python3 eval.py --use_fp16_tensorrt --trained_model=./weights/yolact_edge_54_800000.pth

# Evaluate YolactEdge without TensorRT optimization with '--disable_tensorrt' option.
python3 eval.py --disable_tensorrt --trained_model=./weights/yolact_edge_54_800000.pth

Images

# Display qualitative results on the specified image.
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --score_threshold=0.3 --top_k=100 --image=my_image.png

# Process an image and save it to another file.
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --score_threshold=0.3 --top_k=100 --image=input_image.png:output_image.png

# Process a whole folder of images.
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --score_threshold=0.3 --top_k=100 --images=path/to/input/folder:path/to/output/folder

Video

# Display a video in real-time. "--video_multiframe" will process that many frames at once for improved performance.
# If video_multiframe > 1, then the trt_batch_size should be increased to match it or surpass it. 
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --score_threshold=0.3 --top_k=100 --video_multiframe=2 --trt_batch_size 2 --video=my_video.mp4

# Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --score_threshold=0.3 --top_k=100 --video_multiframe=2 --trt_batch_size 2 --video=0

# Process a video and save it to another file. This is unoptimized.
python eval.py --trained_model=weights/yolact_edge_54_800000.pth --score_threshold=0.3 --top_k=100 --video=input_video.mp4:output_video.mp4

Use the help option to see a description of all available command line arguments:

python eval.py --help

Training

Make sure to download the entire dataset using the commands above.

  • To train, grab an imagenet-pretrained model and put it in ./weights.
    • For Resnet101, download resnet101_reducedfc.pth from here.
    • For Resnet50, download resnet50-19c8e357.pth from here.
    • For MobileNetV2, download mobilenet_v2-b0353104.pth from here.
  • Run one of the training commands below.
    • Note that you can press ctrl+c while training and it will save an *_interrupt.pth file at the current iteration.
    • All weights are saved in the ./weights directory by default with the file name __.pth.
# Trains using the base edge config with a batch size of 8 (the default).
python train.py --config=yolact_edge_config

# Resume training yolact_edge with a specific weight file and start from the iteration specified in the weight file's name.
python train.py --config=yolact_edge_config --resume=weights/yolact_edge_10_32100.pth --start_iter=-1

# Use the help option to see a description of all available command line arguments
python train.py --help

Training on video dataset

# Pre-train the image based model
python train.py --config=yolact_edge_youtubevis_config

# Train the flow (warping) module
python train.py --config=yolact_edge_vid_trainflow_config --resume=./weights/yolact_edge_youtubevis_847_50000.pth

# Fine tune the network jointly
python train.py --config=yolact_edge_vid_config --resume=./weights/yolact_edge_vid_trainflow_144_100000.pth

Custom Datasets

You can also train on your own dataset by following these steps:

  • Depending on the type of your dataset, create a COCO-style (image) or YTVIS-style (video) Object Detection JSON annotation file for your dataset. The specification for this can be found here for COCO and YTVIS respectively. Note that we don't use some fields, so the following may be omitted:
    • info
    • liscense
    • Under image: license, flickr_url, coco_url, date_captured
    • categories (we use our own format for categories, see below)
  • Create a definition for your dataset under dataset_base in data/config.py (see the comments in dataset_base for an explanation of each field):
my_custom_dataset = dataset_base.copy({
    'name': 'My Dataset',

    'train_images': 'path_to_training_images',
    'train_info':   'path_to_training_annotation',

    'valid_images': 'path_to_validation_images',
    'valid_info':   'path_to_validation_annotation',

    'has_gt': True,
    'class_names': ('my_class_id_1', 'my_class_id_2', 'my_class_id_3', ...),

    # below is only needed for YTVIS-style video dataset.

    # whether samples all frames or key frames only.
    'use_all_frames': False,

    # the following four lines define the frame sampling strategy for the given dataset.
    'frame_offset_lb': 1,
    'frame_offset_ub': 4,
    'frame_offset_multiplier': 1,
    'all_frame_direction': 'allway',

    # 1 of K frames is annotated
    'images_per_video': 5,

    # declares a video dataset
    'is_video': True
})
  • Note that: class IDs in the annotation file should start at 1 and increase sequentially on the order of class_names. If this isn't the case for your annotation file (like in COCO), see the field label_map in dataset_base.
  • Finally, in yolact_edge_config in the same file, change the value for 'dataset' to 'my_custom_dataset' or whatever you named the config object above. Then you can use any of the training commands in the previous section.

Citation

If you use this code base in your work, please consider citing:

@article{yolactedge,
  author    = {Haotian Liu and Rafael A. Rivera Soto and Fanyi Xiao and Yong Jae Lee},
  title     = {YolactEdge: Real-time Instance Segmentation on the Edge (Jetson AGX Xavier: 30 FPS, RTX 2080 Ti: 170 FPS)},
  journal   = {arXiv preprint arXiv:2012.12259},
  year      = {2020},
}
@inproceedings{yolact-iccv2019,
  author    = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  title     = {YOLACT: {Real-time} Instance Segmentation},
  booktitle = {ICCV},
  year      = {2019},
}

Contact

For questions about our paper or code, please contact Haotian Liu or Rafael A. Rivera-Soto.

Owner
Haotian Liu
Haotian Liu
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023