Fast, general, and tested differentiable structured prediction in PyTorch

Overview

Torch-Struct: Structured Prediction Library

Tests Coverage Status

A library of tested, GPU implementations of core structured prediction algorithms for deep learning applications.

  • HMM / LinearChain-CRF
  • HSMM / SemiMarkov-CRF
  • Dependency Tree-CRF
  • PCFG Binary Tree-CRF
  • ...

Designed to be used as efficient batched layers in other PyTorch code.

Tutorial paper describing methodology.

Getting Started

!pip install -qU git+https://github.com/harvardnlp/pytorch-struct
# Optional CUDA kernels for FastLogSemiring
!pip install -qU git+https://github.com/harvardnlp/genbmm
# For plotting.
!pip install -q matplotlib
import torch
from torch_struct import DependencyCRF, LinearChainCRF
import matplotlib.pyplot as plt
def show(x): plt.imshow(x.detach())
# Make some data.
vals = torch.zeros(2, 10, 10) + 1e-5
vals[:, :5, :5] = torch.rand(5)
vals[:, 5:, 5:] = torch.rand(5) 
dist = DependencyCRF(vals.log())
show(dist.log_potentials[0])

png

# Compute marginals
show(dist.marginals[0])

png

# Compute argmax
show(dist.argmax.detach()[0])

png

# Compute scoring and enumeration (forward / inside)
log_partition = dist.partition
max_score = dist.log_prob(dist.argmax)
# Compute samples 
show(dist.sample((1,)).detach()[0, 0])

png

# Padding/Masking built into library.
dist = DependencyCRF(vals, lengths=torch.tensor([10, 7]))
show(dist.marginals[0])
plt.show()
show(dist.marginals[1])

png

png

# Many other structured prediction approaches
chain = torch.zeros(2, 10, 10, 10) + 1e-5
chain[:, :, :, :] = vals.unsqueeze(-1).exp()
chain[:, :, :, :] += torch.eye(10, 10).view(1, 1, 10, 10) 
chain[:, 0, :, 0] = 1
chain[:, -1,9, :] = 1
chain = chain.log()

dist = LinearChainCRF(chain)
show(dist.marginals.detach()[0].sum(-1))

png

Library

Full docs: http://nlp.seas.harvard.edu/pytorch-struct/

Current distributions implemented:

  • LinearChainCRF
  • SemiMarkovCRF
  • DependencyCRF
  • NonProjectiveDependencyCRF
  • TreeCRF
  • NeuralPCFG / NeuralHMM

Each distribution includes:

  • Argmax, sampling, entropy, partition, masking, log_probs, k-max

Extensions:

  • Integration with torchtext, pytorch-transformers, dgl
  • Adapters for generative structured models (CFG / HMM / HSMM)
  • Common tree structured parameterizations TreeLSTM / SpanLSTM

Low-level API:

Everything implemented through semiring dynamic programming.

  • Log Marginals
  • Max and MAP computation
  • Sampling through specialized backprop
  • Entropy and first-order semirings.

Examples

Citation

@misc{alex2020torchstruct,
    title={Torch-Struct: Deep Structured Prediction Library},
    author={Alexander M. Rush},
    year={2020},
    eprint={2002.00876},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Comments
  • add tests for CKY

    add tests for CKY

    This PR fixes several bugs in k-best parsing with dist.topk() and includes a simple test to test the function.

    I made incremental changes so that existing modules relying on the CKY will not be affected.

    opened by zhaoyanpeng 8
  • 1st order cky implementation

    1st order cky implementation

    Hi,

    I'd like to contribute this implementation of a first-order cky-style crf with anchored rule potentials: $\phi[i,j,k,A,B,C] := \phi(A_{i,j} \rightarrow B_{i,k}, C{k+1,j})$.

    I also added code to the _Struct class that allows calculating marginals even if input tensors don't require a gradient (i.e., after model.eval())

    Please let me know if you'd like to see any changes.

    Thanks, Tom

    opened by teffland 6
  • Mini-batch setting with Semi Markov CRF

    Mini-batch setting with Semi Markov CRF

    I encounter learning instability when using a batch size > 1 with the semi-markovian CRF (loss goes to very large negative number), even when explicitly providing "lengths". I think the bug comes from the masking. The model train well when setting batch size 1.

    opened by urchade 5
  • Release on PyPI?

    Release on PyPI?

    Is there any interest on releasing pytorch-struct (and genbmm) on the official Python Package Index?

    I ran into this because I distribute my constituency parser on PyPI, and I just recently pushed a new version that depends on pytorch-struct: https://pypi.org/project/benepar/0.2.0a0/

    It turns out that packages on PyPI aren't allowed to depend on packages only hosted on github, so users of my parser can't just pip install benepar and have it work right away.

    opened by nikitakit 5
  • up sweep and down sweep

    up sweep and down sweep

    I'm interested in the parallel scan algorithm for the linear-chain CRF.

    I read the related paper in the tutorial and found that there are two steps: up sweep and down sweep in order to obtain all-prefix-sum.

    I think in this case, we use that algorithm to obtain all Z(x) with different lengths in a batch. But seems I couldn't find out the down sweep code in the repo. Can you point me out there?

    opened by allanj 5
  • [Bug] Implementation of Eisner's algorithm does not restrict the root number to 1

    [Bug] Implementation of Eisner's algorithm does not restrict the root number to 1

    Hey, I found that your implementation of Eisner's algorithm admits arbitrary root number, which is a very severe bug since dependency parsing usually has only one root token.

    In your DepTree.dp() method, you make a conversion to let the root token as the first token in the sentence. Imagine that the root x{0} attacks word x_{i}, I_{0,0} + C_{1, i} = I_{0, i} and I_{0, i} + C_{i,j} = C_{0, j} for some j < L where L is the length of sentence. Now complete span C_{0, j} still have opportunity to attach a new word x_{k} for j< k<=L, making multiple root attachment possible.

    Fortunately, I made some changes to your codes to restrict the root number to 1.

    ` def _dp(self, arc_scores_in, lengths=None, force_grad=False, cache=True): if arc_scores_in.dim() not in (3, 4): raise ValueError("potentials must have dim of 3 (unlabeled) or 4 (labeled)")

        labeled = arc_scores_in.dim() == 4
        semiring = self.semiring
        # arc_scores_in = _convert(arc_scores_in)
        arc_scores_in, batch, N, lengths = self._check_potentials(
            arc_scores_in, lengths
        )
        arc_scores_in.requires_grad_(True)
        arc_scores = semiring.sum(arc_scores_in) if labeled else arc_scores_in
        alpha = [
            [
                [
                    Chart((batch, N, N), arc_scores, semiring, cache=cache)
                    for _ in range(2)
                ]
                for _ in range(2)
            ]
            for _ in range(2)
        ]
    
        semiring.one_(alpha[A][C][L].data[:, :, :, 0].data)
        semiring.one_(alpha[A][C][R].data[:, :, :, 0].data)
        semiring.one_(alpha[B][C][L].data[:, :, :, -1].data)
        semiring.one_(alpha[B][C][R].data[:, :, :, -1].data)
    
    
        for k in range(1, N):
            f = torch.arange(N - k), torch.arange(k, N)
            ACL = alpha[A][C][L][: N - k, :k]
            ACR = alpha[A][C][R][: N - k, :k]
            BCL = alpha[B][C][L][k:, N - k :]
            BCR = alpha[B][C][R][k:, N - k :]
            x = semiring.dot(ACR, BCL)
            arcs_l = semiring.times(x, arc_scores[:, :, f[1], f[0]])
            alpha[A][I][L][: N - k, k] = arcs_l
            alpha[B][I][L][k:N, N - k - 1] = arcs_l
            arcs_r = semiring.times(x, arc_scores[:, :, f[0], f[1]])
            alpha[A][I][R][:N - k, k] = arcs_r
            alpha[B][I][R][k:N, N - k - 1] = arcs_r
            AIR = alpha[A][I][R][: N - k, 1 : k + 1]
            BIL = alpha[B][I][L][k:, N - k - 1 : N - 1]
            new = semiring.dot(ACL, BIL)
            alpha[A][C][L][: N - k, k] = new
            alpha[B][C][L][k:N, N - k - 1] = new
            new = semiring.dot(AIR, BCR)
            alpha[A][C][R][: N - k, k] = new
            alpha[B][C][R][k:N, N - k - 1] = new
    
        root_incomplete_span = semiring.times(alpha[A][C][L][0, :], arc_scores[:, :, torch.arange(N), torch.arange(N)])
        root =  [ Chart((batch,), arc_scores, semiring, cache=cache) for _ in range(N)]
        for k in range(N):
            AIR = root_incomplete_span[:, :, :k+1]
            BCR = alpha[B][C][R][k, N - (k+1):]
            root[k] = semiring.dot(AIR, BCR)
        v = torch.stack([root[l-1][:,i] for i, l in enumerate(lengths)], dim=1)
        return v, [arc_scores_in], alpha
    

    `

    Basically, I don't treat the first token as root anymore. I handle the root token just after the for-loop, so you may need handle the length variable. (length = length-1, root no longer be treated as part of sentence) . I tested the modified code and found it bug-free

    opened by sustcsonglin 4
  • Inference for the HMM model

    Inference for the HMM model

    Hello! I was playing with the HMM distribution and I obtained some results that I don't really understand. More precisely, I've set the following parameters

    t = torch.tensor([[0.99, 0.01], [0.01, 0.99]]).log()
    e = torch.tensor([[0.50, 0.50], [0.50, 0.50]]).log()
    i = torch.tensor(np.array([0.99, 0.01])).log()
    x = torch.randint(0, 2, size=(1, 8))
    

    and I was expecting the model to stay in the hidden state 0 regardless of the observed data x – it starts in state 0 and the transition matrix makes it very likely to maintain it. But when plotting the argmax, it appears that the model jumps from one state to the other:

    def show_chain(chain):
        plt.imshow(chain.detach().sum(-1).transpose(0, 1))
    
    dist = torch_struct.HMM(t, e, i, x)
    show_chain(dist.argmax[0])
    

    image

    I must be missing something obvious; but shouldn't dist.argmax correspond to argmax_z p(z | x, Θ)? Thank you!

    opened by danoneata 4
  • DependencyCRF partition function broken

    DependencyCRF partition function broken

    Getting the following in-place operation error when using the DependencyCRF:

    B,N = 3,50
    phi = torch.randn(B,N,N)
    DependencyCRF(phi).partition
    
    /usr/local/lib/python3.7/dist-packages/torch_struct/deptree.py in _check_potentials(self, arc_scores, lengths)
        121         arc_scores = semiring.convert(arc_scores)
        122         for b in range(batch):
    --> 123             semiring.zero_(arc_scores[:, b, lengths[b] + 1 :, :])
        124             semiring.zero_(arc_scores[:, b, :, lengths[b] + 1 :])
        125 
    
    /usr/local/lib/python3.7/dist-packages/torch_struct/semirings/semirings.py in zero_(xs)
        124     @staticmethod
        125     def zero_(xs):
    --> 126         return xs.fill_(-1e5)
        127 
        128     @staticmethod
    
    RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
    
    opened by teffland 3
  • [Question] How to compute a marginal probability over a (contiguous) set of nodes?

    [Question] How to compute a marginal probability over a (contiguous) set of nodes?

    Hi.

    Thank you for the great library. I have one question that I hope you could help with.

    How can I compute a marginal probability over a (contiguous) set of nodes? Right now, I am using your LinearChain-CRF to do NER. In addition to the best sequence itself, I also need to compute the model’s confidence in its predicted labeling over a segment of input. For example, what is the probability that a span of tokens constitute a person name?

    I read your example and see how you get the marginal prob for each individual node. But I was not quite sure how to compute the marginal prob over a subset of nodes. If you could give any hint, it would be great.

    Thank you.

    opened by kimdev95 3
  • Get the score of dist.topk()

    Get the score of dist.topk()

    The topk() function returns top k predictions from the distribution, how to easily get the corresponding score of each prediction?

    By the way, when sentence lengths are short and the k value of topk is large, how to know the number of predictions that are valid? For the example in DependencyCRF, when sentence length is 2 and k is 5, only the top 3 predictions are valid I think.

    opened by wangxinyu0922 3
  • Labeled projective dependency CRF

    Labeled projective dependency CRF

    This is work in progress and isn't ready to merge yet.

    This seems to work for partition, but argmax and marginals don't return as I expect. Both return tensor of shape (B, N, N); I'd expect them to return (B, N, N, L) tensors instead. Any advice?

    opened by kmkurn 3
  • [Question] How to apply pytorch-struct for 2 dimensional data?

    [Question] How to apply pytorch-struct for 2 dimensional data?

    I could find examples of pytorch struct usage for 1d sequence data like text or video frame. But I'm trying to parse tables structure in pdf documents.

    Could you provide some hints where to start?

    opened by YuriyPryyma 4
  • end_class support for Autoregressive

    end_class support for Autoregressive

    end_class is not used for the Autoregressive module: https://github.com/harvardnlp/pytorch-struct/blob/7146de5659ff17ad7be53023c025ffd099866412/torch_struct/autoregressive.py#L49

    opened by urchade 1
  • Update examples to use newer torchtext APIs

    Update examples to use newer torchtext APIs

    opened by erip 2
  • Instable learning with SemiMarkov CRF

    Instable learning with SemiMarkov CRF

    HI,

    First, thank you for fixing #110 (@da03), the SemiCRF works better now, I was able to get good results on span extraction tasks. However, I still encounter a learning instability where the loss (neg logprob) gets negative after several steps (and the accuracy starts to drop). The same problem occurs with batch_size = 1. Below I put the learning curve (f1_score and log loss).

    (Maybe the bug comes from the masking of spans where (length, length + span_with) and length + span_with > length, but I am not sure.)

    Edit: I created a test and it seems that the masking is good. Maybe the log_prob computation or the to_parts function ?

    train_loss score

    opened by urchade 0
  • fix bug- missing assignment of spans from sentCFG in documentation

    fix bug- missing assignment of spans from sentCFG in documentation

    Noticed a small bug in the documentation and example of SentCFG. The return of dist.argmax is (terms, rules, init, spans), but example in documentation only assigns (term, rules, init) and gives dim mismatch. As such when running the example it breaks. This fix resolves this issue.

    opened by jdegange 0
Releases(v0.5)
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 06, 2022
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 04, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023