Tensors and neural networks in Haskell

Overview

Hasktorch

Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.

This project is in active development, so expect changes to the library API as it evolves. We would like to invite new users to join our Hasktorch slack space for questions and discussions. Contributions/PR are encouraged.

Currently we are developing the second major release of Hasktorch (0.2). Note the 1st release, Hasktorch 0.1, on hackage is outdated and should not be used.

Documentation

The documentation is divided into several sections:

Introductory Videos

Getting Started

The following steps will get you started. They assume the hasktorch repository has just been cloned. After setup is done, read the online tutorials and API documents.

linux+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+cabal+cuda11

Starting from the top-level directory of the project, run:

$ pushd deps              # Change to the deps directory and save the current directory.
$ ./get-deps.sh -a cu111  # Run the shell script to retrieve the libtorch dependencies.
$ popd                    # Go back to the root directory of the project.
$ source setenv           # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh        # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

macos+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

macos+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

nixos+cabal+cpu

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

nixos+cabal+cuda11

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell --arg cudaSupport true --argstr cudaMajorVersion 11  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

docker+jupyterlab+cuda11

This dockerhub repository provides the docker-image of jupyterlab. It supports cuda11, cuda10 and cpu only. When you use jupyterlab with hasktorch, type following command, then click a url in a console.

$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter
or
$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter:latest-cu11

Known Issues

Tensors Cannot Be Moved to CUDA

In rare cases, you may see errors like

cannot move tensor to "CUDA:0"

although you have CUDA capable hardware in your machine and have followed the getting-started instructions for CUDA support.

If that happens, check if /run/opengl-driver/lib exists. If not, make sure your CUDA drivers are installed correctly.

Weird Behaviour When Switching from CPU-Only to CUDA-Enabled Nix Shell

If you have run cabal in a CPU-only Hasktorch Nix shell before, you may need to:

  • Clean the dist-newstyle folder using cabal clean.
  • Delete the .ghc.environment* file in the Hasktorch root folder.

Otherwise, at best, you will not be able to move tensors to CUDA, and, at worst, you will see weird linker errors like

gcc: error: hasktorch/dist-newstyle/build/x86_64-linux/ghc-8.8.3/libtorch-ffi-1.5.0.0/build/Torch/Internal/Unmanaged/Autograd.dyn_o: No such file or directory
`cc' failed in phase `Linker'. (Exit code: 1)

Contributing

We welcome new contributors.

Contact us for access to the hasktorch slack channel. You can send an email to [email protected] or on twitter as @austinvhuang, @SamStites, @tscholak, or @junjihashimoto3.

Notes for library developers

See the wiki for developer notes.

Project Folder Structure

Basic functionality:

  • deps/ - submodules and downloads for build dependencies (libtorch, mklml, pytorch) -- you can ignore this if you are on Nix
  • examples/ - high level example models (xor mlp, typed cnn, etc.)
  • experimental/ - experimental projects or tips
  • hasktorch/ - higher level user-facing library, calls into ffi/, used by examples/

Internals (for contributing developers):

  • codegen/ - code generation, parses Declarations.yaml spec from pytorch and produces ffi/ contents
  • inline-c/ - submodule to inline-cpp fork used for C++ FFI
  • libtorch-ffi/- low level FFI bindings to libtorch
  • spec/ - specification files used for codegen/
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Vikrant Deshpande 1 Nov 17, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022