Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

Overview

SimplePose

Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, accepted by AAAI-2020.

Also this repo serves as the Part B of our paper "Multi-Person Pose Estimation Based on Gaussian Response Heatmaps" (under review). The Part A is available at this link.

  • Update

    A faster project is to be released.

Introduction

A bottom-up approach for the problem of multi-person pose estimation.

heatmap

network

Contents

  1. Training
  2. Evaluation
  3. Demo

Project Features

  • Implement the models using Pytorch in auto mixed-precision (using Nvidia Apex).
  • Support training on multiple GPUs (over 90% GPU usage rate on each GPU card).
  • Fast data preparing and augmentation during training (generating about 40 samples per second on signle CPU process and much more if wrapped by DataLoader Class).
  • Focal L2 loss. FL2
  • Multi-scale supervision.
  • This project can also serve as a detailed practice to the green hand in Pytorch.

Prepare

  1. Install packages:

    Python=3.6, Pytorch>1.0, Nvidia Apex and other packages needed.

  2. Download the COCO dataset.

  3. Download the pre-trained models (default configuration: download the pretrained model snapshotted at epoch 52 provided as follow).

    Download Link: BaiduCloud

    Alternatively, download the pre-trained model without optimizer checkpoint only for the default configuration via GoogleDrive

  4. Change the paths in the code according to your environment.

Run a Demo

python demo_image.py

examples

Inference Speed

The speed of our system is tested on the MS-COCO test-dev dataset.

  • Inference speed of our 4-stage IMHN with 512 × 512 input on one 2080TI GPU: 38.5 FPS (100% GPU-Util).
  • Processing speed of the keypoint assignment algorithm part that is implemented in pure Python and a single process on Intel Xeon E5-2620 CPU: 5.2 FPS (has not been well accelerated).

Evaluation Steps

The corresponding code is in pure python without multiprocess for now.

python evaluate.py

Results on MSCOCO 2017 test-dev subset (focal L2 loss with gamma=2):

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.685
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.867
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.749
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.664
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.719
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.728
 Average Recall     (AR) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.892
 Average Recall     (AR) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.782
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.688
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.784

Training Steps

Before training, prepare the training data using ''SimplePose/data/coco_masks_hdf5.py''.

Multiple GUPs are recommended to use to speed up the training process, but we support different training options.

  • Most code has been provided already, you can train the model with.

    1. 'train.py': single training process on one GPU only.
    2. 'train_parallel.py': signle training process on multiple GPUs using Dataparallel.
    3. 'train_distributed.py' (recommended): multiple training processes on multiple GPUs using Distributed Training:
python -m torch.distributed.launch --nproc_per_node=4 train_distributed.py

Note: The loss_model_parrel.py is for train.py and train_parallel.py, while the loss_model.py is for train_distributed.py and train_distributed_SWA.py. They are different in dividing the batch size. Please refer to the code about the different choices.

For distributed training, the real batch_size = batch_size_in_config* × GPU_Num (world_size actually). For others, the real batch_size = batch_size_in_config*. The differences come from the different mechanisms of data parallel training and distributed training.

Referred Repositories (mainly)

Recommend Repositories

Faster Version: Chun-Ming Su has rebuilt and improved the post-processing speed of this repo using C++, and the improved system can run up to 7~8 FPS using a single scale with flipping on a 2080 TI GPU. Many thanks to Chun-Ming Su.

Citation

Please kindly cite this paper in your publications if it helps your research.

@inproceedings{li2020simple,
  title={Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation.},
  author={Li, Jia and Su, Wen and Wang, Zengfu},
  booktitle={AAAI},
  pages={11354--11361},
  year={2020}
}
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023