This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Overview

Gait3D-Benchmark

This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)". The official project page is here.

What's New

  • [Mar 2022] Another gait in the wild dataset GREW is supported.
  • [Mar 2022] Our Gait3D dataset and SMPLGait method are released.

Model Zoo

Gait3D

Input Size: 128x88(64x44)

Method [email protected] [email protected] mAP mINP download
GaitSet(AAAI2019)) 42.60(36.70) 63.10(58.30) 33.69(30.01) 19.69(17.30) model-128(model-64)
GaitPart(CVPR2020) 29.90(28.20) 50.60(47.60) 23.34(21.58) 13.15(12.36) model-128(model-64)
GLN(ECCV2020) 42.20(31.40) 64.50(52.90) 33.14(24.74) 19.56(13.58) model-128(model-64)
GaitGL(ICCV2021) 23.50(29.70) 38.50(48.50) 16.40(22.29) 9.20(13.26) model-128(model-64)
OpenGait Baseline* 47.70(42.90) 67.20(63.90) 37.62(35.19) 22.24(20.83) model-128(model-64)
SMPLGait(CVPR2022) 53.20(46.30) 71.00(64.50) 42.43(37.16) 25.97(22.23) model-128(model-64)

*It should be noticed that OpenGait Baseline is equal to SMPLGait w/o 3D in our paper.

Cross Domain

Datasets in the Wild (GaitSet, 64x44)

Source Target [email protected] [email protected] mAP
GREW (official split) Gait3D 15.80 30.20 11.83
GREW (our split) 16.50 31.10 11.71
Gait3D GREW (official split) 18.81 32.25 ~
GREW (our split) 43.86 60.89 28.06

Requirements

  • pytorch >= 1.6
  • torchvision
  • pyyaml
  • tensorboard
  • opencv-python
  • tqdm
  • py7zr
  • tabulate
  • termcolor

Installation

You can replace the second command from the bottom to install pytorch based on your CUDA version.

git clone https://github.com/Gait3D/Gait3D-Benchmark.git
cd Gait3D-Benchmark
conda create --name py37torch160 python=3.7
conda activate py37torch160
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install tqdm pyyaml tensorboard opencv-python tqdm py7zr tabulate termcolor

Data Preparation

Please download the Gait3D dataset by signing an agreement. We ask for your information only to make sure the dataset is used for non-commercial purposes. We will not give it to any third party or publish it publicly anywhere.

Data Pretreatment

Run the following command to preprocess the Gait3D dataset.

python misc/pretreatment.py --input_path 'Gait3D/2D_Silhouettes' --output_path 'Gait3D-sils-64-44-pkl' --img_h 64 --img_w 44
python misc/pretreatment.py --input_path 'Gait3D/2D_Silhouettes' --output_path 'Gait3D-sils-128-88-pkl' --img_h 128 --img_w 88
python misc/pretreatment_smpl.py --input_path 'Gait3D/3D_SMPLs' --output_path 'Gait3D-smpls-pkl'

Data Structrue

After the pretreatment, the data structure under the directory should like this

├── Gait3D-sils-64-44-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl
├── Gait3D-sils-128-88-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl
├── Gait3D-smpls-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl

Train

Run the following command:

sh train.sh

Test

Run the following command:

sh test.sh

Citation

Please cite this paper in your publications if it helps your research:

@inproceedings{zheng2022gait3d,
  title={Gait Recognition in the Wild with Dense 3D Representations and A Benchmark},
  author={Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Acknowledgement

Here are some great resources we benefit:

  • The codebase is based on OpenGait.
  • The 3D SMPL data is obtained by ROMP.
  • The 2D Silhouette data is obtained by HRNet-segmentation.
  • The 2D pose data is obtained by HRNet.
  • The ReID featrue used to make Gait3D is obtained by FastReID.
Comments
  • lib/modeling/models/smplgait.py throwing error when training a new dataset

    lib/modeling/models/smplgait.py throwing error when training a new dataset

    Hi Jinkai,

    When I try to use the SMPLGait to apply on other dataset, during the training process, the smplgait.py throws the error that: smpls = ipts[1][0] # [n, s, d] IndexError: list index out of range It is also interesting that I used 4 GPUs in the training. 3 of them could detect the the ipts[1][0] tensor with size 1. However, the fourth one failed to do so. Could I know how I can solve this?

    opened by zhiyuann 7
  • I have a few questions about Gait3D-Benchmark Datasets

    I have a few questions about Gait3D-Benchmark Datasets

    Hi. Im jjun. I read your paper impressively.

    We don't currently live in China, so it is difficult to use dataset on baidu disk.

    If you don't mind, is there a way to download the dataset to another disk (e.g Google drive)?

    opened by jjunnii 6
  • Question about 3D SMPL skeleton topology diagram

    Question about 3D SMPL skeleton topology diagram

    Your work promotes the application of gait recognition in real scenes, can you provide the topology diagram of the SMPL 3D skeleton in Gait3D? Because the specific meaning of the 24 joint points is not stated in your data description document.

    opened by HL-HYX 4
  • ROMP SMPL transfer

    ROMP SMPL transfer

    When I try to use the ROMP to generate out the 3D mesh, I detect there is a version conflict with the ROMP used by SMPLGait. Could I know which version of the ROMP the SMPLGait used? In this way I could use the SMPLGait to run on other ReID dataset.

    opened by zhiyuann 3
  • question about iteration and epoch

    question about iteration and epoch

    Hi! The total iteration in your code is set to 180000, and you report the total epoch as 1200 in your paper. What's the relationship between iteration and epoch?

    opened by yan811 2
  • About data generation

    About data generation

    Hi! I 'd like to know some details about data generation in NPZ files.

    In npz file: 1 What's the order of "pose"? SMPL pose parameter should be [24,3] dim, how did you convert it to [72,]? The order is [keypoint1_angel1, keypoint1_angle2, keypoint1_angle3, keypoint2_angel1, keypoint2_angle2, keypoint2_angle3...] or [keypoint1_angle1, keypoint2_angle1... keypoint1_angle2, keypoint2_angle2... keypoint1_angle3, keypoint1_angle3... ] ?

    2 How did you generate pose into SMPL format,SPIN format , and OpenPose format? What's the order of the second dim? Is the keypoint order the same with SMPL model?

    3 In pkl file: For example, dim of data in './0000/camid0_videoid2/seq0/seq0.pkl' is [48,85]. What's the order of dim 1? Is it ordered by time order or shuffled?

    opened by yan811 2
  • GREW pretreatment `to_pickle` has size 0

    GREW pretreatment `to_pickle` has size 0

    I'm trying to run GREW pretreatment code but it generates no GREW-pkl folder at the end of the process. I debugged myself and checked if the --dataset flag is set properly and the to_pickle list size before saving the pickle file. The flag is well set but the size of the list is always 0.

    I downloaded the GREW dataset from the link you guys sent me and made de GREW-rearranged folder using the code provided. I'll keep investigating what is causing such an error and if I find I'll set a fixing PR.

    opened by gosiqueira 1
  • About the pose data

    About the pose data

    Can you make a detailed description of the pose data? This is the path of one frame pose and the corresponding content of the txt file Gait3D/2D_Poses/0000/camid9_videoid2/seq0/human_crop_f17279.txt '311,438,89.201164,62.87694,0.57074964,89.201164,54.322254,0.47146344,84.92382,62.87694,0.63443935,42.150383....' I have 3 questions. Q1: what does 'f17279' means? Q2: what does the first number (e.g. 311) in the txt file mean? Q3: which number('f17279' or '311') should I regard as a base when I order the sequence? Thank you very much!

    opened by HiAleeYang 0
Owner
Official repo for Gait3D dataset
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022