Dual Adaptive Sampling for Machine Learning Interatomic potential.

Related tags

Machine Learningdas
Overview

DAS

Dual Adaptive Sampling for Machine Learning Interatomic potential.

How to cite

If you use this code in your research, please cite this using: Hongliang Yang, Yifan Zhu, Erting Dong, Yabei Wu, Jiong Yang, and Wenqing Zhang. Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy. Phys. Rev. B 104, 094310 (2021).

Install

Install pymtp

You should first install the python interface for mtp: https://github.com/hlyang1992/pymtp

Install das

You can download the code by

git clone https://github.com/hlyang1992/das
cd das
cp -r <path-to-mlip-2>/untrained_mtps/*.mtp das/utils/untrained_mtps

Then remove the redundant settings from each mtp file. Only the following settings can be retained for each mtp file:

radial_funcs_count = 
alpha_moments_count = 
alpha_index_basic_count = 
alpha_index_basic = 
alpha_index_times_count = 
alpha_index_times = 
alpha_scalar_moments = 
alpha_moment_mapping =

Install das by

cd <path-to-das>
pip install -r requirements.txt
pip install .

Usage

das  config_dir  job_name

Configuration

The configuration directory config_dir must contain the configuration file conf.yaml, which controls all sampling processes. The conf.yaml file should look like the following:

"global_settings":

"machine_settings":

"selector_settings": {} 

"labeler_settings":

"trainer_settings":

"sampler_settings":

"init_conf_setting":

"iter_params_template":

"iter_params":
  • global_settings:
"global_settings":
  # The elements in the system, the order of the elements does not matter, the program automatically numbers the 
  # atomic types according to their atomic number from smallest to largest.
  "unique_elements": [ "Co", "Sb" ]
  # path to VASP Pseudopotential Database, see detail at https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html#vasp
  "vasp_pp_path": "path_to_directory" 
  • machine_settings:

All time-consuming computational tasks such as sampling, labeling, and training can be dispatched to designated machines via ssh. Currently only LSF is supported and migration to other job management systems is very easy.

"machine_settings":
  "machine_1":
    # The supported machine types are now: `machine_lsf`, `machine_shell`
    "machine_type": "machine_lsf"
    "host": "ip address"
    "user": "username"
    "password": "password"
    # Exclude these nodes when submitting tasks.
    "bad_nodes": [ ] # #BSUB -R "hname!={{node}}"
    "port": 22
    # number of cores for each task
    "n_cores": 40 # #BSUB -n {{ncores}}
    "n_tasks": 40 # The maximum number of tasks to run simultaneously.
    "q_name": "short" # #BSUB -q {{q_name}}
    "env_source_file": "env.sh" # env.sh is in the config_dir
    "run_dir": "path-to-run-directory-in-target"
    "extra_params":
      "vasp_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP vasp"
      "lmp_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP lmp_mlp"
      "mlip_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP mlp train"
      "python_cmd": "absolute path to python path"
  "machine_2":
    # setting for machchine_2
    "machine_type": "machine_lsf"
    # ...

You should prepare a file to set the environment variables. The program will source this file to set the environment variables after connecting to the machine via ssh. For technical reasons please see: The remote shell environment doesn’t match interactive shells

  • sampler_settings
"scale_1":
  "kind": "scale_box"
  "scale_factors": [0.998, 0.9985, 0.999]
"scale_2":
  "kind": "scale_box"
  "scale_factors": [[0.998, 0.9985, 0.999, 0.997], # a
                    [1.002, 1.003, 1.004, 1.005],  # b
                    [0.997, 0.995, 0.999, 0.996]] # c
"nvt_0": 
  "kind": "lmp_model_sampler"
  "max_number_confs": 5
  "min_number_confs": 0
  "machine": "machine_1"
  "lmp_vars":
    "temp": [ 100, 150 ]
    "steps": [ 10000 ]
    "nevery": [ 20 ]
    "prev_steps": [ 0 ]
 
"npt_0": 
  "kind": "lmp_model_sampler"
  "max_number_confs": 5
  "min_number_confs": 0
  "machine": "machine_2"
  "lmp_vars":
    "temp": [ 100, 150 ]
    "steps": [ 10000 ]
    "nevery": [ 20 ]
    "press": [100, 200] # bar
    "prev_steps": [ 0 ]
  • "labeler_settings"

We use ase to generate input files (INCAR, POTCAR, KPOINTS) for VASP calculation. Please see detail at Ase vasp calculator

"labeler_settings":
  "vasp":
    "kind": "vasp"
    "machine": "ty_label"
    "vasp_parms":
      "xc": "pbe"
      "prec": "A"
      # other setting for vasp calculations
  • "trainer_settings"
"trainer_settings":
  "train_5_model":
    "kind": "mtp_trainer"
    "machine": "ty_train" 
    "model_index": 18 
    "min_dist": 1.39 
    "max_dist": 5.0
    "n_models": 5 
    "train_from_prev_model": true 
  • init_conf_setting:
"init_conf_setting":
  "-1": [ "init_MD.cfg" ]
  "-2": [ "init_1.vasp" ]
  "-3": [ "init_2.vasp" ]
  • iter_params_template:
"iter_params_template":
  "0":
    "init_conf": [ -1 ]
    "sampler": [ ]
    "selector": [ ]
    "labeler": [ ]
    "trainer": [ "train_5_model" ]
  "10":
    "init_conf": [ -2 ]
    "sampler": [ "scale_0", "nvt_0" ]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  "20":
    "init_conf": [ -3 ]
    "sampler": [ "npt_0"]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  "30":
    "init_conf": [ -2,-3 ]
    "sampler": [ "npt_0"]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  • iter_params:
"iter_params":
  [
    [ "0" ],
    # If the last one is LOOP, repeat all the previous ones until convergence.
    ["10", "LOOP"], 
    ["30", "LOOP"],
    ["10", "10"]  
    ["20"],
  ]
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023