The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

Overview

CircleNet: Anchor-free Detection with Circle Representation

The official implementation of CircleNet, MICCAI 2020

[PyTorch] [project page] [MICCAI paper]

Object detection networks are powerful in computer vision, but not necessarily optimized for biomedical object detection. In this work, we propose CircleNet, a simple anchor-free detection method with circle representation for detection of the ball-shaped glomerulus. Different from the traditional bounding box based detection method, the bounding circle (1) reduces the degrees of freedom of detection representation, (2) is naturally rotation invariant, (3) and optimized for ball-shaped objects.

full citation is

Haichun Yang, Ruining Deng, Yuzhe Lu, Zheyu Zhu, Ye Chen, Joseph T. Roland, Le Lu, Bennett A. Landman, Agnes B. Fogo, and Yuankai Huo. "CircleNet: Anchor-free Detection with Circle Representation." arXiv preprint arXiv:2006.02474 (2020).

Envrioment Set up

We used CUDA 10.2 and PyTorch 0.4.1.

The implementation is based on the CenterNet. https://github.com/xingyizhou/CenterNet

Please install the packages, following https://github.com/xingyizhou/CenterNet/blob/master/readme/INSTALL.md

  • For "Clone this repo" step, please clone CircleNet rather than CenterNet

Testing on a whole slide image

The Case 03-1.scn file is avilable https://vanderbilt.box.com/s/s530m45rvk626xi1thwcdc2bhoea758r

The model_10.pth model file is avilable (human kidney) https://vumc.box.com/s/wpar2kz9600h9ao3wowjzc3y50znneop

To run it on a testing scan, please go to "src" folder and run

python run_detection_for_scn.py circledet --arch dla_34 --demo "/media/huoy1/48EAE4F7EAE4E264/Projects/from_haichun/batch_1_data/scn/Case 03-1.scn" --load_model /media/huoy1/48EAE4F7EAE4E264/Projects/detection/CircleNet/exp/circledet/kidpath_dla_batch4/model_10.pth --filter_boarder --demo_dir "/media/huoy1/48EAE4F7EAE4E264/Projects/detection/test_demo"

The demo_dir is output dir, which you set anywhere in your computer.

After running code, you will see a Case 03-1.xml file. Then you put the xml and scn files into the same folder, and open the scn file using ImageScope software (only avilable in Windows OS), you can see something like the following image, with green detection results.

A Google Colab demo of the above testing code is added

https://github.com/hrlblab/CircleNet/blob/master/src/circle_net_demo.ipynb

Run your own training code

The training code is

python main.py circledet --exp_id kidpath_dla_batch4 --arch dla_34 --batch_size 4 --master_batch 4 --lr 2.5e-4   --gpus 0 --print_iter 1  --dataset kidpath --save_all --load_model ../models/ctdet_coco_dla_2x.pth

You can get the ctdet_coco_dla_2x.pth model from model zoo https://github.com/xingyizhou/CenterNet/blob/master/readme/MODEL_ZOO.md

Owner
The Biomedical Data Representation and Learning Lab
Official GitHub repository of HRLB lab at Vanderbilt
The Biomedical Data Representation and Learning Lab
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods ๐Ÿ”ด Now framework-agnostic! (Example core notebook) ๐Ÿ”ด ๐Ÿ”— For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model ๐Ÿ˜Ž Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao ยท W Ding ยท Y.C. Lui ยท R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020