๐ŸฅA PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

Overview

PyTorch implementation of OpenAI's Finetuned Transformer Language Model

This is a PyTorch implementation of the TensorFlow code provided with OpenAI's paper "Improving Language Understanding by Generative Pre-Training" by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.

This implementation comprises a script to load in the PyTorch model the weights pre-trained by the authors with the TensorFlow implementation.

Transformer Language Model

The model classes and loading script are located in model_pytorch.py.

The names of the modules in the PyTorch model follow the names of the Variable in the TensorFlow implementation. This implementation tries to follow the original code as closely as possible to minimize the discrepancies.

This implementation thus also comprises a modified Adam optimization algorithm as used in OpenAI's paper with:

Requirements

To use the model it-self by importing model_pytorch.py, you just need:

  • PyTorch (version >=0.4)

To run the classifier training script in train.py you will need in addition:

  • tqdm
  • sklearn
  • spacy
  • ftfy
  • pandas

You can download the weights of the OpenAI pre-trained version by cloning Alec Radford's repo and placing the model folder containing the pre-trained weights in the present repo.

Using the pre-trained model as a Transformer Language Model

The model can be used as a transformer language model with OpenAI's pre-trained weights as follow:

from model_pytorch import TransformerModel, load_openai_pretrained_model, DEFAULT_CONFIG

args = DEFAULT_CONFIG
model = TransformerModel(args)
load_openai_pretrained_model(model)

This model generates Transformer's hidden states. You can use the LMHead class in model_pytorch.py to add a decoder tied with the weights of the encoder and get a full language model. You can also use the ClfHead class in model_pytorch.py to add a classifier on top of the transformer and get a classifier as described in OpenAI's publication. (see an example of both in the __main__ function of train.py)

To use the positional encoder of the transformer, you should encode your dataset using the encode_dataset() function of utils.py. Please refer to the beginning of the __main__ function in train.py to see how to properly define the vocabulary and encode your dataset.

Fine-tuning the pre-trained model on a classification task

This model can also be integrated in a classifier as detailed in OpenAI's paper. An example of fine-tuning on the ROCStories Cloze task is included with the training code in train.py

The ROCStories dataset can be downloaded from the associated website.

As with the TensorFlow code, this code implements the ROCStories Cloze Test result reported in the paper which can be reproduced by running:

python -m spacy download en
python train.py --dataset rocstories --desc rocstories --submit --analysis --data_dir [path to data here]

First experiments on the ROCStories test set

Finetuning the PyTorch model for 3 Epochs on ROCStories takes 10 minutes to run on a single NVidia K-80.

The single run test accuracy of this PyTorch version is 85.84%, while the authors reports a median accuracy with the TensorFlow code of 85.8% and the paper reports a best single run accuracy of 86.5%.

The authors implementations uses 8 GPU and can thus accomodate a batch of 64 samples while the present implementation is single GPU and is in consequence limited to 20 instances on a K80 for memory reasons. In our test, increasing the batch size from 8 to 20 samples increased the test accuracy by 2.5 points. A better accuracy may be obtained by using a multi-GPU setting (not tried yet).

The previous SOTA on the ROCStories dataset is 77.6% ("Hidden Coherence Model" of Chaturvedi et al. published in "Story Comprehension for Predicting What Happens Next" EMNLP 2017, which is a very nice paper too!)

Owner
Hugging Face
The AI community building the future.
Hugging Face
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

์•Œ๊ณ ๋ฆฌ์ฆ˜ ์Šคํ„ฐ๋”” ๐Ÿ”ฅ ๋ถ€์ŠคํŠธ์บ ํ”„ ์›น๋ชจ๋ฐ”์ผ 6๊ธฐ iOS 10์กฐ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์Šคํ„ฐ๋”” ์ž…๋‹ˆ๋‹ค. ๊ฐœ์ธ์ ์ธ ์‚ฌ์ • ๋“ฑ์œผ๋กœ S034, S055๋งŒ ์ฐธ๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์Šคํ„ฐ๋”” ๋ชฉ์  ์ƒ์ง„: ์ฝ”ํ…Œ ํ•ฉ๊ฒฉ + ๋ถ€์บ ๋๋‚˜๊ณ  ์•„์นจ์— ์ผ์–ด๋‚˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์‚ฌ์ดํด ๊ธฐ์™„: ๊พธ์ค€ํ•˜๊ฒŒ ์ž๋ฆฌ์— ์•‰์•„ ๊ณต๋ถ€ํ•˜๊ธฐ +

2 Jan 11, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with โค๏ธ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022