Distributed Asynchronous Hyperparameter Optimization in Python

Related tags

Deep Learninghyperopt
Overview

Hyperopt: Distributed Hyperparameter Optimization

Build Status PyPI version Anaconda-Server Badge

Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which may include real-valued, discrete, and conditional dimensions.

Getting started

Install hyperopt from PyPI

$ pip install hyperopt

to run your first example

# define an objective function
def objective(args):
    case, val = args
    if case == 'case 1':
        return val
    else:
        return val ** 2

# define a search space
from hyperopt import hp
space = hp.choice('a',
    [
        ('case 1', 1 + hp.lognormal('c1', 0, 1)),
        ('case 2', hp.uniform('c2', -10, 10))
    ])

# minimize the objective over the space
from hyperopt import fmin, tpe, space_eval
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

print(best)
# -> {'a': 1, 'c2': 0.01420615366247227}
print(space_eval(space, best))
# -> ('case 2', 0.01420615366247227}

Contributing

Setup (based on this)

If you're a developer and wish to contribute, please follow these steps:

  1. Create an account on GitHub if you do not already have one.

  2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code under your account on the GitHub user account. For more details on how to fork a repository see this guide.

  3. Clone your fork of the hyperopt repo from your GitHub account to your local disk:

    $ git clone https://github.com/<github username>/hyperopt.git
    $ cd hyperopt

Setup a python 3.x environment for dependencies

  1. Create environment with:
    $ python3 -m venv my_env or $ python -m venv my_env or with conda:
    $ conda create -n my_env python=3

  2. Activate the environment:
    $ source my_env/bin/activate
    or with conda:
    $ conda activate my_env

  3. Install dependencies for extras (you'll need these to run pytest): Linux/UNIX: $ pip install -e '.[MongoTrials, SparkTrials, ATPE, dev]'

    or Windows:

    pip install -e .[MongoTrials]
    pip install -e .[SparkTrials]
    pip install -e .[ATPE]
    pip install -e .[dev]
  4. Add the upstream remote. This saves a reference to the main hyperopt repository, which you can use to keep your repository synchronized with the latest changes:

    $ git remote add upstream https://github.com/hyperopt/hyperopt.git

    You should now have a working installation of hyperopt, and your git repository properly configured. The next steps now describe the process of modifying code and submitting a PR:

  5. Synchronize your master branch with the upstream master branch:

    $ git checkout master
    $ git pull upstream master
  6. Create a feature branch to hold your development changes:

    $ git checkout -b my_feature

    and start making changes. Always use a feature branch. It’s good practice to never work on the master branch!

Formatting

  1. We recommend to use Black to format your code before submitting a PR which is installed automatically in step 4.

  2. Then, once you commit ensure that git hooks are activated (Pycharm for example has the option to omit them). This will run black automatically on all files you modified, failing if there are any files requiring to be blacked. In case black does not run execute the following:

    $ black {source_file_or_directory}
  3. Develop the feature on your feature branch on your computer, using Git to do the version control. When you’re done editing, add changed files using git add and then git commit:

    $ git add modified_files
    $ git commit -m "my first hyperopt commit"

Running tests

  1. The tests for this project use PyTest and can be run by calling pytest.

  2. Record your changes in Git, then push the changes to your GitHub account with:

    $ git push -u origin my_feature

Note that dev dependencies require python 3.6+.

Algorithms

Currently three algorithms are implemented in hyperopt:

Hyperopt has been designed to accommodate Bayesian optimization algorithms based on Gaussian processes and regression trees, but these are not currently implemented.

All algorithms can be parallelized in two ways, using:

Documentation

Hyperopt documentation can be found here, but is partly still hosted on the wiki. Here are some quick links to the most relevant pages:

Related Projects

Examples

See projects using hyperopt on the wiki.

Announcements mailing list

Announcements

Discussion mailing list

Discussion

Cite

If you use this software for research, please cite the paper (http://proceedings.mlr.press/v28/bergstra13.pdf) as follows:

Bergstra, J., Yamins, D., Cox, D. D. (2013) Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. TProc. of the 30th International Conference on Machine Learning (ICML 2013), June 2013, pp. I-115 to I-23.

Thanks

This project has received support from

  • National Science Foundation (IIS-0963668),
  • Banting Postdoctoral Fellowship program,
  • National Science and Engineering Research Council of Canada (NSERC),
  • D-Wave Systems, Inc.
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022