Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

Related tags

Deep Learningdsl
Overview

DSL

Project page: https://sites.google.com/view/dsl-ram-lab/

Monocular Direct Sparse Localization in a Prior 3D Surfel Map

Authors: Haoyang Ye, Huaiyang Huang, and Ming Liu from RAM-LAB.

Paper and Video

Related publications:

@inproceedings{ye2020monocular,
  title={Monocular direct sparse localization in a prior 3d surfel map},
  author={Ye, Haoyang and Huang, Huaiyang and Liu, Ming},
  booktitle={2020 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={8892--8898},
  year={2020},
  organization={IEEE}
}
@inproceedings{ye20213d,
  title={3D Surfel Map-Aided Visual Relocalization with Learned Descriptors},
  author={Ye, Haoyang and Huang, Huaiyang and Hutter, Marco and Sandy, Timothy and Liu, Ming},
  booktitle={2021 International Conference on Robotics and Automation (ICRA)},
  pages={5574-5581},
  year={2021},
  organization={IEEE}
}

Video: https://www.youtube.com/watch?v=LTihCBGcURo

Dependency

  1. Pangolin.
  2. CUDA.
  3. Ceres-solver.
  4. PCL, the default version accompanying by ROS.
  5. OpenCV, the default version accompanying by ROS.

Build

  1. git submodule update --init --recursive
  2. mkdir build && cd build
  3. cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo
  4. make -j8

Example

The sample config file can be downloaded from this link.

To run the example:

[path_to_build]/src/dsl_main --path "[path_to_dataset]/left_pinhole"

Preparing Your Own Data

  1. Collect LiDAR and camera data.
  2. Build LiDAR map and obtain LiDAR poses (the poses are not necessary).
  3. Pre-process LiDAR map to make the [path_to_dataset]/*.pcd map file contains normal_x, normal_y, normal_z fields (downsample & normal estimation).
  4. Extract and undistort images into [path_to_dataset]/images.
  5. Set the first camera pose to initial_pose and other camera parameters in [path_to_dataset]/config.yaml.

Note

This implementation of DSL takes Ceres Solver as backend, which is different from the the implementation of the original paper with DSO-backend. This leads to different performance, i.e., speed and accuracy, compared to the reported results.

Credits

This work is inspired from several open-source projects, such as DSO, DSM, Elastic-Fusion, SuperPoint, DBoW2, NetVlad, LIO-mapping and etc.

Licence

The source code is released under GPL-3.0.

The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022