Continual Learning of Electronic Health Records (EHR).

Overview

arXiv License: MIT

Continual Learning of Longitudinal Health Records

Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Release v0.1 of the project corresponds to published results.

Experiments evaluate various continual learning strategies on standard ICU predictive tasks exhibiting covariate shift. Task outcomes are binary, and input data are multi-modal time-series from patient ICU admissions.

Setup

  1. Clone this repo to your local machine.
  2. Request access to MIMIC-III and eICU-CRD.1
  3. Download the preprocessed datasets to the /data subfolder.
  4. (Recommended) Create and activate a new virtual environment:
    python3 -m venv .venv --upgrade-deps
  5. Install dependencies:
    pip install -U wheel buildtools
    pip install -r requirements.txt

Results

To reproduce main results:

python3 main.py --train

Figures will be saved to /results/figs. Instructions to reproduce supplementary experiments can be found here. Bespoke experiments can be specified with appropriate flags e.g:

python3 main.py --domain_shift hospital --outcome mortality_48h --models CNN --strategies EWC Replay --validate --train

A complete list of available options can be found here or with python3 main.py --help.

Citation

If you use any of this code in your work, please reference us:

@misc{armstrong2021continual,
      title={Continual learning of longitudinal health records}, 
      author={J. Armstrong and D. Clifton},
      year={2021},
      eprint={2112.11944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Python versions

Notes

Note that Temporal Domain Incremental learning experiments require linkage with original MIMIC-III dataset. Requires downloading ADMISSIONS.csv from MIMIC-III to the /data/mimic3/ folder.

Stack

For standardisation of ICU predictive task definitions, feature pre-processing, and Continual Learning method implementations, we use the following tools:

Tool Source
ICU Data MIMIC-III
eICU-CRD
Data preprocessing / task definition FIDDLE
Continual Learning strategies Avalanche
Comments
  • Change experience to class balanced replay

    Change experience to class balanced replay

    Have manually edited the replay definition for now. Will need to update avalanche and do change based on training.storage_policy.

    May also need to change memory buffer to n_tasks * buffer (since GEM etc use this number for experience-wise buffer sizes).

    opened by iacobo 1
  • Bump numpy from 1.20.3 to 1.22.0

    Bump numpy from 1.20.3 to 1.22.0

    Bumps numpy from 1.20.3 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Add Naive with no regularization?

    Add Naive with no regularization?

    Maybe add naive with no regularization? I.e. no dropout etc, to enable clearer ablation testing of naive fine tuning and inherent regularization mechanisms vs explicit CL strategy.

    opened by iacobo 0
  • CNN fails with kernel_size 5 or 7

    CNN fails with kernel_size 5 or 7

    Getting the following error (on GPU) with CNN runs with kernel_size in [5,7]:

    RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)`
    

    https://stackoverflow.com/questions/66600362/runtimeerror-cuda-error-cublas-status-execution-failed-when-calling-cublassge?answertab=votes#tab-top

    opened by iacobo 0
  • Add early stopping to avoid over-large number of epochs for diff models

    Add early stopping to avoid over-large number of epochs for diff models

    MLP / LSTM take shorter time to train than CNN / Transformer. Add early stopping to avoid overtraining, saturating.

    Change strategy to base strategy inheriting from strat and earlystopping plugin.

    opened by iacobo 0
  • Correct code for ROC AUC and AUPRC

    Correct code for ROC AUC and AUPRC

    Cannot average metrics over minibatches as is done for other metrics, since they depend on threshold. Need to calculate over all. Check e.g. MeanScore for inspiration on metric definition.

    opened by iacobo 0
  • Need to add code for further experiments

    Need to add code for further experiments

    plotting.plot_demographics()
    
    # Secondary experiments:
    ########################
    # Sensitivity to sequence length (4hr vs 12hr)
    # Sensitivity to replay size Naive -> replay -> Cumulative
    # Sensitivity to hyperparams of reg methods (Tune hyperparams over increasing number of tasks?)
    # Sensitivity to number of variables (full vs Vitals only e.g.)
    # Sensitivity to size of domains - e.g. white ethnicity much larger than all other groups, affect of order of sequence
    
    opened by iacobo 1
  • Ray Tune warnings

    Ray Tune warnings

    Ray Tune produces the following warnings:

    INFO registry.py:66 -- Detected unknown callable for trainable. Converting to class.
    WARNING experiment.py:295 -- No name detected on trainable. Using DEFAULT.
    

    Non-fatal, but it's annoying to have these messages bloating the console output.

    raytune 
    opened by iacobo 2
Releases(v0.1)
Owner
Jacob
Data Scientist @publichealthengland
Jacob
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022