Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Related tags

Deep Learningpotr
Overview

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

alt text

This is the repo used for human motion prediction with non-autoregressive transformers published with our paper

alt text

Requirements

  • Pytorch>=1.7.
  • Numpy.
  • Tensorboard for pytorch.

Data

We have performed experiments with 2 different datasets

  1. H36M
  2. NTURGB+D (60 actions)

Follow the instructions to download each dataset and place it in data.

Note. You can download the H36M dataset using wget http://www.cs.stanford.edu/people/ashesh/h3.6m.zip. However, the code expects files to be npy files instead of txt. You can use the script in data/h36_convert_txt_to_numpy.py to convert to npy files.

Training

To run training with H3.6M dataset and save experiment results in POTR_OUT folder run the following:

python training/transformer_model_fn.py \
  --model_prefix=${POTR_OUT} \
  --batch_size=16 \
  --data_path=${H36M} \
  --learning_rate=0.0001 \
  --max_epochs=500 \
  --steps_per_epoch=200 \
  --loss_fn=l1 \
  --model_dim=128 \
  --num_encoder_layers=4 \
  --num_decoder_layers=4 \
  --num_heads=4 \
  --dim_ffn=2048 \
  --dropout=0.3 \
  --lr_step_size=400 \
  --learning_rate_fn=step \
  --warmup_epochs=100 \
  --pose_format=rotmat \
  --pose_embedding_type=gcn_enc \
  --dataset=h36m_v2 \
  --pre_normalization \
  --pad_decoder_inputs \
  --non_autoregressive \
  --pos_enc_alpha=10 \
  --pos_enc_beta=500 \
  --predict_activity \
  --action=all

Where pose_embedding_type controls the type of architectures of networks to be used for encoding and decoding skeletons (\phi and \psi in our paper). See models/PoseEncoderDecoder.py for the types of architectures. Tensorboard curves and pytorch models will be saved in ${POTR_OUT}.

Citation

If you happen to use the code for your research, please cite the following paper

@inproceedings{Martinez_ICCV_2021,
author = "Mart\'inez-Gonz\'alez, A. and Villamizar, M. and Odobez, J.M.",
title = {Pose Transformers (POTR): Human Motion Prediction with Non-Autoregressive Transformers},
booktitle = {IEEE/CVF International Conference on Computer Vision - Workshops (ICCV)},
year = {2021}
}
Owner
Idiap Research Institute
Idiap Research Institute
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022