Preparation material for Dropbox interviews

Overview

Dropbox-Onsite-Interviews

A guide for the Dropbox onsite interview!

The Dropbox interview question bank is very small. The bank has been in a Chinese forum for many years now, and we would like to make it accessible to everyone so that everyone will have an equal opportunity to prepare for the Dropbox onsite interview!

https://1o24bbs.com/t/topic/1381

Backup link: https://web.archive.org/web/20210224003004/https://1o24bbs.com/t/topic/1381


Behavioral Questions:

Talk about an impactful project that you led.

  • Teams that you collaborated with.
  • Convincing others to take action.
  • A tough decision that you had to make during that project.

A critical piece of feedback that you received from someone and what you did after that.

An important piece of feedback that you gave to someone else.

A conflict that you had with someone else.

How do you contribute to diversity and inclusion?


We do not ask for references and we do not check for references.


Coding and System Design Tips

As always, you must talk your way through the problem and explain your reasoning. You should ALWAYS talk about performance (system performance for system design and time/space complexity for the coding problems) and talk about testing, even if the interviewer does not prompt you to.

Coding Question List:

  1. Id Allocator - Create a class that can allocate and release ids. The image in the packet is wrong. Please see this image.

This question is EXTREMELY popular and is asked in most onsite interviews, even if you're not a recent graduate.

Solution

  1. Download File / BitTorrent - Create a class that will receive pieces of a file and tell whether the file can be assembled from the pieces.

This question is mostly for new graduates/phone screens.

  1. Game of Life - Conway's Game of Life - Problem on LeetCode

This question is EXTREMELY popular for phone screens.

Solution

  1. Hit Counter - Design a class to count the hits received by a webpage

This question is mostly on phone screens.

Solution

  1. Web Crawler - Design a web crawler, first single-threaded, then multithreaded.

This question is EXTREMELY popular for onsite interviews.

Solution

  1. Token Bucket

This question is somewhat popular for onsite interviews. It has a multi-threaded component.

Solution

  1. Search the DOM

This question is somewhat popular for roles with a large frontend component.

Question

  1. Space Panorama

Create an API to read and write files and maintain access to the least-recently written file. Then scale it up to a pool of servers.

Solution

  1. Phone Number / Dictionary - Given a phone number, consider all the words that could be made on a T9 keypad. Return all of those words that can be found in a dictionary of specific words.

This question is sometimes asked to college students and sometimes asked in phone screens. It isn't asked a lot in onsites.

Solution

  1. Sharpness Value - This question is usually phrased like "find the minimum value along all maximal paths". It's a dynamic programming question.

Occasionally asked in phone screens. Might be asked in onsites for new hires.

Solution

  1. Find Byte Pattern in a File - Determine whether a pattern of bytes occurs in a file. You need to understand the Rabin-Karp style rolling hash to do well.

Somewhat frequently asked in onsite interviews. Might be asked in phone screens.

Solution

  1. Count and Say - LeetCode. Follow up - what if it's a stream of characters?

Asked to college interns.

Solution

  1. Number of Islands / Number of Connected Components - Find the number of connected components in a grid. Leetcode

Mainly asked to college interns.

Solution

  1. Combination Sum / Bottles of Soda / Coin Change - Find all distinct combinations of soda bottles that add up to a target amount of soda. LeetCode

Mainly asked to IC1 candidates.

Solution

  1. Find Duplicate Files - Given the root of a folder tree, find all the duplicate files and return a list of the collections of duplicate files. LeetCode

Somewhat popular in phone screens. Less common in onsites.

Solution

Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021