t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

Related tags

Data Analysistreesne
Overview

tree-SNE

t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in speeding up t-SNE and obtaining finer-grained structure, we combine the two to create tree-SNE, a hierarchical clustering and visualization algorithm based on stacked one-dimensional t-SNE embeddings. We also introduce alpha-clustering, which recommends the optimal cluster assignment, without foreknowledge of the number of clusters, based off of the cluster stability across multiple scales. We demonstrate the effectiveness of tree-SNE and alpha-clustering on images of handwritten digits, mass cytometry (CyTOF) data from blood cells, and single-cell RNA-sequencing (scRNA-seq) data from retinal cells. Furthermore, to demonstrate the validity of the visualization, we use alpha-clustering to obtain unsupervised clustering results competitive with the state of the art on several image data sets.

ArXiv preprint: https://arxiv.org/abs/2002.05687

Prerequisites

Install Fit-SNE from https://github.com/KlugerLab/FIt-SNE and add the FIt-SNE directory that you cloned to your PYTHONPATH environmental variable. This lets tree-SNE access the Python file used to interface with FIt-SNE. This can be done one of several ways:

  • run export PYTHONPATH="$PYTHONPATH":/path/to/FIt-SNE in your terminal before running your Python script using tree-SNE
  • add export PYTHONPATH="$PYTHONPATH":/path/to/FIt-SNE to your .bash_profile
  • add the line import sys; sys.path.append('/path/to/FIt-SNE/') to your Python script before calling import tree_sne

Also make sure to have Numpy, Scipy, Sklearn, and Matplotlib installed.

We've tested with Python 3.6+.

Test/Example

Run example.py to make sure everything is set up right. This will run tree-SNE on the USPS handwritten digit dataset, run alpha-clustering, calculate the NMI, and display the tree. You can refer to this file for calling conventions. Note the top line adding FIt-SNE to the Python path.

Sample Usage

Assuming you have a 2D Numpy array containing your data in a variable X. To build a tree-SNE plot with 30 layers, cluster on each layer, and determine the optimal clustering via alpha-clustering (note does not require preknowledge of the number of clusters):

from tree_sne import TreeSNE

tree = TreeSNE()
embeddings, layer_clusters, best_clusters = tree.fit(X, n_layers = 30)

The embeddings variable will contain each data point's embedding in each layer, with embeddings.shape of (n_points, n_layers, n_features). For now, n_features will always be 1, as we haven't yet implemented stacked 2D t-SNE embeddings. The variable layer_clusters will contain cluster assignments for each point in each layer of the embedding, and best_clusters will contain optimal cluster assignments for the data.

To display the tree using our code with cluster labels, run:

from display_tree import display_tree_mnist
import numpy as np

display_tree_mnist(embeddings, true_labels = best_clusters, legend_labels = list(np.unique(best_clusters)), distinct = True)

Alternatively, some labels you provide can be used instead of best_clusters. We realize this is messy but until we refactor this is what we have. We're sorry. You don't have to use our display code if you don't want to, and we'll improve it soon.

If your data has more clusters, reduce the conservativeness parameter to TreeSNE. Typical values range from 1 to 2. It should never drop below 1 according to our theory motivation for its implementation, and we've only had to decrease it when trying to find 100 clusters, in which case we set it to 1.3. n_layers and conservativeness are the only two parameters that we think users may want to adjust, at least for the time being. Once we've refactored we'll write more documentation. Note that conservativeness only effects alpha-clustering and does not actually change the tree-SNE embedding itself.

MNIST tree-SNE example plot

Authors

Acknowledgments

The authors thank Stefan Steinerberger for inspiration, support, and advice; George Linderman for enabling one-dimensional t-SNE with degrees of freedom < 1 in the FIt-SNE package; Scott Gigante for data pre-processing and helpful discussions of visualizations and alpha-clustering; Smita Krishnaswamy for encouragement and feedback; and Ariel Jaffe for discussing the Nyström method and its relationship to subsampled spectral clustering.

Owner
Isaac Robinson
Yale computer science and math major interested in entrepreneurship
Isaac Robinson
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
Shot notebooks resuming the main functions of GeoPandas

Shot notebooks resuming the main functions of GeoPandas, 2 notebooks written as Exercises to apply these functions.

1 Jan 12, 2022
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
Data cleaning tools for Business analysis

Datacleaning datacleaning tools for Business analysis This program is made for Vicky's work. You can use it, too. 数据清洗 该数据清洗工具是为了商业分析 这个程序是为了Vicky的工作而

Lin Jian 3 Nov 16, 2021
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021