Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Overview

Edge Tracing using Gaussian Process Regression

Repository storing python module which implements a framework to trace individual edges in an image using Gaussian process regression.


Abstract from paper on methodology

We introduce a novel edge tracing algorithm using Gaussian process regression. Our edge-based segmentation algorithm models an edge of interest using Gaussian process regression and iteratively searches the image for edge pixels in a recursive Bayesian scheme. This procedure combines local edge information from the image gradient and global structural information from posterior curves, sampled from the model's posterior predictive distribution, to sequentially build and refine an observation set of edge pixels. This accumulation of pixels converges the distribution to the edge of interest. Hyperparameters can be tuned by the user at initialisation and optimised given the refined observation set. This tunable approach does not require any prior training and is not restricted to any particular type of imaging domain. Due to the model's uncertainty quantification, the algorithm is robust to artefacts and occlusions which degrade the quality and continuity of edges in images. Our approach also has the ability to efficiently trace edges in image sequences by using previous-image edge traces as a priori information for consecutive images. Various applications to medical imaging and satellite imaging are used to validate the technique and comparisons are made with two commonly used edge tracing algorithms.

More information

Paper which describes this methodology has been accepted to be published in IEEE Transactions on Image Processing in December 2021 or January 2022 (TBC).

For open access to this paper for information on the algorithm, pseudocode, applications and discussion, see here


Getting started

Required packages

  • numpy
  • matplotlib
  • scikit-learn
  • scikit-image
  • KDEpy
  • scipy
  • time

Code demonstration

After cloning this repository, import the python module and the provided utilities script:

# Import relevant python packages
import numpy as np
from gp_edge_tracing import gpet_utils, gpet

We can now construct the same noisy, test image used in the paper:

# Create test image with single sinusoidal edge and simple image gradient
N = 500
test_img, true_edge = gpet_utils.construct_test_img(size=(N,N), amplitude=200, curvature=4, noise_level=0.05, ltype='sinusoidal', intensity=0.3, gaps=True)

kernel = gpet_utils.kernel_builder(size=(11,5), unit=False)
grad_img = gpet_utils.comp_grad_img(test_img, kernel)

This test image and corresponding image gradient is shown below.

testimg_imggrad

With specification of default parameters we can run the edge tracing algorithm:

# Define model parameters
kernel_params = {'kernel': 'RBF', 'sigma_f': 75, 'length_scale': 20}
delta_x = 5
score_thresh = 1
N_samples = 1000
noise_y = 1
seed = 1
keep_ratio = 0.1
init = true_edge[[0, -1],:][:, [1,0]]
obs = np.array([])
fix_endpoints=True
return_std = True

# Instantiate algorithm using parameters in __init__()
noisy_trace = gpet.GP_Edge_Tracing(init, grad_img, kernel_params, noise_y, obs, N_samples, score_thresh,
                                   delta_x, keep_ratio, seed, return_std, fix_endpoints)

# __call__() parameters and run algorithm on test image
# Change these verbosity parameters to monitor fitting procedure
print_final_diagnostics = False
show_init_post = False
show_post_iter = False
verbose = False
edge_pred, edge_credint = noisy_trace(print_final_diagnostics, show_init_post, show_post_iter, verbose)

We can then superimpose the edge prediction and 95% credible interval onto the test image and image gradient, quantitatively comparing the prediction with the ground truth, as shown below.

testimg_result

More information

please refer to this notebook for the code to reproduce this result, as well as where to find more information on the compulsory, tuning and verbosity parameters.


Contributors

Owner
Jamie Burke
I'm a third year PhD student at the University of Edinburgh currently developing novel image processing tools for automated ocular image analysis.
Jamie Burke
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023