EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Overview

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Paper: EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale submitted to IEEE Robotics and Automation Letters (RA-L) (ArXiv)

Jacek Komorowski, Monika Wysoczanska, Tomasz Trzcinski

Warsaw University of Technology

What's new

  • [2021-10-24] Evaluation code and pretrained models released.

Our other projects

  • MinkLoc3D: Point Cloud Based Large-Scale Place Recognition (WACV 2021): MinkLoc3D
  • MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition (IJCNN 2021): MinkLoc++
  • Large-Scale Topological Radar Localization Using Learned Descriptors (ICONIP 2021): RadarLoc

Introduction

The paper presents a deep neural network-based method for global and local descriptors extraction from a point cloud acquired by a rotating 3D LiDAR sensor. The descriptors can be used for two-stage 6DoF relocalization. First, a course position is retrieved by finding candidates with the closest global descriptor in the database of geo-tagged point clouds. Then, 6DoF pose between a query point cloud and a database point cloud is estimated by matching local descriptors and using a robust estimator such as RANSAC. Our method has a simple, fully convolutional architecture and uses a sparse voxelized representation of the input point cloud. It can efficiently extract a global descriptor and a set of keypoints with their local descriptors from large point clouds with tens of thousand points.

Citation

If you find this work useful, please consider citing:

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.9.1 and MinkowskiEngine 0.5.4 on Ubuntu 20.04 with CUDA 10.2. Note: CUDA 11.1 is not recommended as there are some issues with MinkowskiEngine 0.5.4 on CUDA 11.1.

The following Python packages are required:

  • PyTorch (version 1.9.1)
  • MinkowskiEngine (version 0.5.4)
  • pytorch_metric_learning (version 0.9.99 or above)
  • wandb

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/home/.../Egonn

Datasets

EgoNN is trained and evaluated using the following datasets:

  • MulRan dataset: Sejong traversal is used. The traversal is split into training and evaluation part link
  • Apollo-SouthBay dataset: SunnyvaleBigLoop trajectory is used for evaluation, other 5 trajectories (BaylandsToSeafood, ColumbiaPark, Highway237, MathildaAVE, SanJoseDowntown) are used for training link
  • Kitti dataset: Sequence 00 is used for evaluation link

First, you need to download datasets:

  • For MulRan dataset you need to download ground truth data (*.csv) and LiDAR point clouds (Ouster.zip) for traversals: Sejong01 and Sejong02 (link).
  • Download Apollo-SouthBay dataset using the download link on the dataset website (link).
  • Download Kitti odometry dataset (calibration files, ground truth poses, Velodyne laser data) (link).

After loading datasets you need to generate training pickles for the network training and evaluation pickles for model evaluation.

Training pickles generation

Generating training tuples is very time consuming, as ICP is used to refine the ground truth poses between each pair of neighbourhood point clouds.

cd datasets/mulran
python generate_training_tuples.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_training_tuples.py --dataset_root <apollo_southbay_dataset_root_path>
Evaluation pickles generation
cd datasets/mulran
python generate_evaluation_sets.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_evaluation_sets.py --dataset_root <apollo_southbay_dataset_root_path>

cd ../kitti
python generate_evaluation_sets.py --dataset_root <kitti_dataset_root_path>

Training (training code will be released after the paper acceptance)

First, download datasets and generate training and evaluation pickles as described above. Edit the configuration file config_egonn.txt. Set dataset_folder parameter to point to the dataset root folder. Modify batch_size_limit and secondary_batch_size_limit parameters depending on available GPU memory. Default limits requires at least 11GB of GPU RAM.

To train the EgoNN model, run:

cd training

python train.py --config ../config/config_egonn.txt --model_config ../models/egonn.txt 

Pre-trained Model

EgoNN model trained (on training splits of MulRan and Apollo-SouthBay datasets) is available in weights/model_egonn_20210916_1104.pth folder.

Evaluation

To evaluate a pretrained model run below commands. Ground truth poses between different traversals in all three datasets are slightly misaligned. To reproduce results from the paper, use --icp_refine option to refine ground truth poses using ICP.

cd eval

# To evaluate on test split of Mulran dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type mulran --eval_set test_Sejong01_Sejong02.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of Apollo-SouthBay dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type southbay --eval_set test_SunnyvaleBigloop_1.0_5.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of KITTI dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type kitti --eval_set kitti_00_eval.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

Results

EgoNN performance...

Visualizations

Visualizations of our keypoint detector results. On the left, we show 128 keypoints with the lowest saliency uncertainty (red dots). On the right, 128 keypoints with the highest uncertainty (yellow dots).

Successful registration of point cloud pairs from KITTI dataset gathered during revisiting the same place from different directions. On the left we show keypoint correspondences (RANSAC inliers) found during 6DoF pose estimation with RANSAC. On the right we show point clouds aligned using estimated poses.

License

Our code is released under the MIT License (see LICENSE file for details).

[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022