PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

Overview

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

The paper: https://arxiv.org/abs/1704.03296

What makes the deep learning network think the image label is 'pug, pug-dog' and 'tabby, tabby cat':

Dog Cat

A perturbation of the dog that caused the dog category score to vanish:

Perturbed

What makes the deep learning network think the image label is 'flute, transverse flute':

Flute


Usage: python explain.py <path_to_image>

This is a PyTorch impelentation of

"Interpretable Explanations of Black Boxes by Meaningful Perturbation. Ruth Fong, Andrea Vedaldi" with some deviations.

This uses VGG19 from torchvision. It will be downloaded when used for the first time.

This learns a mask of pixels that explain the result of a black box. The mask is learned by posing an optimization problem and solving directly for the mask values.

This is different than other visualization techniques like Grad-CAM that use heuristics like high positive gradient values as an indication of relevance to the network score.

In our case the black box is the VGG19 model, but this can use any differentiable model.


How it works

Equation

Taken from the paper https://arxiv.org/abs/1704.03296

The goal is to solve for a mask that explains why did the network output a score for a certain category.

We create a low resolution (28x28) mask, and use it to perturb the input image to a deep learning network.

The perturbation combines a blurred version of the image, the regular image, and the up-sampled mask.

Wherever the mask contains low values, the input image will become more blurry.

We want to optimize for the next properties:

  1. When using the mask to blend the input image and it's blurred versions, the score of the target category should drop significantly. The evidence of the category should be removed!
  2. The mask should be sparse. Ideally the mask should be the minimal possible mask to drop the category score. This translates to a L1(1 - mask) term in the cost function.
  3. The mask should be smooth. This translates to a total variation regularization in the cost function.
  4. The mask shouldn't over-fit the network. Since the network activations might contain a lot of noise, it can be easy for the mask to just learn random values that cause the score to drop without being visually coherent. In addition to the other terms, this translates to solving for a lower resolution 28x28 mask.

Deviations from the paper

The paper uses a gaussian kernel with a sigma that is modulated by the value of the mask. This is computational costly to compute since the mask values are updated during the iterations, meaning we need a different kernel for every mask pixel for every iteration.

Initially I tried approximating this by first filtering the image with a filter bank of varying gaussian kernels. Then during optimization, the input image pixel would use the quantized mask value to select an appropriate filter bank output pixel (high mask value -> lower channel).

This was done using the PyTorch variable gather/select_index functions. But it turns out that the gather and select_index functions in PyTorch are not differentiable by the indexes.

Instead, we just compute a perturbed image once, and then blend the image and the perturbed image using:

input_image = (1 - mask) * image + mask * perturbed_image

And it works well in practice.

The perturbed image here is the average of the gaussian and median blurred image, but this can really be changed to many other combinations (try it out and find something better!).

Also now gaussian noise with a sigma of 0.2 is added to the preprocssed image at each iteration, inspired by google's SmoothGradient.

Owner
Jacob Gildenblat
Machine learning / Computer Vision.
Jacob Gildenblat
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023